solve this question please
Attachments:
Answers
Answered by
1
sin a ( 1+ sina / cos a ) + cos a ( 1+ cos a / sin a )
sin a ( (cos a + sin a ) / cos a ) + cos a ((sin a + cos a) / sin a )
(cos a + sina )(sin a / cos a ) + (sin a + cos a )(cos a / sin a )
(cos a + sin a)(tan a ) + (cos a + sin a)(cot a )
taking cos a + sin a as common we get
(cos a + sin a )(tan a + cot a )
(cos a + sin a )((sin a / cos a)+(cos a / sin a ))
(cos a + sina )((sin2a + cos 2a / sin a cos a))
(cos a + sin a )( 1 / sin a cos a)
(cos a + sina ) / sin a cos a
(cos a / sin a cos a) + (sin a / sin a cos a )
( 1 / sin a ) + (1 / cos a )
cosec a + sec a
hence proved
sin a ( (cos a + sin a ) / cos a ) + cos a ((sin a + cos a) / sin a )
(cos a + sina )(sin a / cos a ) + (sin a + cos a )(cos a / sin a )
(cos a + sin a)(tan a ) + (cos a + sin a)(cot a )
taking cos a + sin a as common we get
(cos a + sin a )(tan a + cot a )
(cos a + sin a )((sin a / cos a)+(cos a / sin a ))
(cos a + sina )((sin2a + cos 2a / sin a cos a))
(cos a + sin a )( 1 / sin a cos a)
(cos a + sina ) / sin a cos a
(cos a / sin a cos a) + (sin a / sin a cos a )
( 1 / sin a ) + (1 / cos a )
cosec a + sec a
hence proved
Answered by
1
I hope this answer will help u......
Attachments:
Similar questions