Math, asked by sagarpiyush27, 3 months ago

solve this question please​

Attachments:

Answers

Answered by Anonymous
1

Given

 \to \sf \: x -  \dfrac{1}{x}  =  \dfrac{1}{2}

To Find the Value

 \sf \to \: 4 {x}^{2}  +  \dfrac{4}{ {x}^{2} }

Now Take

\to \sf \: x -  \dfrac{1}{x}  =  \dfrac{1}{2}

Squaring on both side

\to \sf \: \bigg( x -  \dfrac{1}{x} \bigg) ^{2}   =   \bigg(\dfrac{1}{2}  \bigg)^{2}

Use This identities

 \sf \to(a - b) {}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab

we get

 \sf \to \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  - 2 \times x \times  \dfrac{1}{x}  =  \dfrac{1}{4}

 \sf \to \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  - 2   =  \dfrac{1}{4}

 \sf \to \:  4 \bigg({x}^{2}  +  \dfrac{1}{ {x}^{2} }  - 2   \bigg) =  1

 \sf \to \:  4{x}^{2}  +  \dfrac{4}{ {x}^{2} }  - 8    =  1

 \sf \to \:  4{x}^{2}  +  \dfrac{4}{ {x}^{2} }     =  1 + 8

 \sf \to \:  4{x}^{2}  +  \dfrac{4}{ {x}^{2} }     = 9

Answer

\sf \to \:  4{x}^{2}  +  \dfrac{4}{ {x}^{2} }     = 9

Similar questions