Math, asked by joshiuk127, 2 months ago

Solve this Question please​

Attachments:

Answers

Answered by Anonymous
18

Given expression,

 \sf \sqrt[3]{ {x}^{2} }   + 3 \sqrt[3]{x}  = 4

Assume y = x⅓, substituting value of 'y' in the above expression, we obtain :

 \longrightarrow \sf  {y}^{2}  + 3y - 4 = 0 \\  \\ \longrightarrow \sf  {y}^{2}   + 4y - y - 4 = 0 \\  \\ \longrightarrow \sf(y + 4)(y - 1) = 0 \\  \\ \longrightarrow \sf ( \sqrt[3]{x}  + 4)( \sqrt[3]{x}  - 1) = 0 \\  \\ \longrightarrow \sf \:  \sqrt[3]{x}  =  - 4 \: or \: 1 \\  \\ \longrightarrow  \boxed{ \boxed{\sf x =  - 64 \: or \: 1}}

Similar questions