Math, asked by saniyajain12, 1 month ago

solve this question please​

Attachments:

Answers

Answered by santoshsurin27
0

Answer:

18 and 322

Step-by-step explanation:

for explanation look at the solution I posted.

Attachments:
Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:x = \dfrac{ \sqrt{5}  - 2 }{ \sqrt{5}  + 2}

On rationalizing the denominator, we get

\rm :\longmapsto\:x = \dfrac{ \sqrt{5}  - 2 }{ \sqrt{5}  + 2} \times \dfrac{ \sqrt{5}  - 2}{ \sqrt{5}  - 2}

\rm :\longmapsto\:x = \dfrac{ {( \sqrt{5}  - 2)}^{2} }{ {( \sqrt{5})}^{2}  -  {(2)}^{2} }

\red{\bigg \{ \because \:(x + y)(x - y) =  {x}^{2} -  {y}^{2}   \bigg \}}

\rm :\longmapsto\:x = \dfrac{5 + 4 - 4 \sqrt{5} }{5 - 4}

\red{\bigg \{ \because \:  {(x  - y)}^{2} =  {x}^{2} +  {y}^{2} - 2xy   \bigg \}}

\rm :\longmapsto\:x = \dfrac{9 - 4 \sqrt{5} }{1}

\rm :\implies\:x = 9 - 4 \sqrt{5}

Now,

Consider,

\rm :\longmapsto\:\dfrac{1}{x}

 \rm \:  \:  =  \: \dfrac{1}{9 - 4 \sqrt{5} }

 \rm \:  \:  =  \: \dfrac{1}{9 - 4 \sqrt{5} } \times  \dfrac{9 + 4 \sqrt{5} }{9 + 4 \sqrt{5} }

 \rm \:  \:  =  \: \dfrac{9 + 4 \sqrt{5} }{ {(9)}^{2} -  {(4 \sqrt{5}) }^{2}  }

 \rm \:  \:  =  \: \dfrac{9 + 4 \sqrt{5} }{81 - 80}

 \rm \:  \:  =  \: \dfrac{9 + 4 \sqrt{5} }{1}

 \rm \:  \:  =  \: 9 + 4 \sqrt{5}

\rm :\implies\:\dfrac{1}{x} = 9 + 4 \sqrt{5}

Hence,

\rm :\longmapsto\:x + \dfrac{1}{x}

 \rm \:  \:  =  \:9 - 4 \sqrt{5}  +  9 + 4 \sqrt{5}

 \rm \:  \:  =  \: 18

Therefore,

\rm :\implies\:x + \dfrac{1}{x} = 18

On squaring both sides, we get

\rm :\longmapsto\: {\bigg(x + \dfrac{1}{x} \bigg) }^{2} =  {(18)}^{2}

\rm :\longmapsto\: {x}^{2}  + \dfrac{1}{ {x}^{2} }  + 2 \times x \times \dfrac{1}{x} = 324

\rm :\longmapsto\: {x}^{2}  + \dfrac{1}{ {x}^{2} }  + 2  = 324

\rm :\longmapsto\: {x}^{2}  + \dfrac{1}{ {x}^{2} } = 324 - 2

\rm :\longmapsto\: {x}^{2}  + \dfrac{1}{ {x}^{2} } = 322

Additional Information :-

More Identities to know:

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions