Math, asked by Anonymous, 26 days ago

Solve this question please.​

Attachments:

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given series is

\rm :\longmapsto\:S_n = 1.3 + 3.5 + 5.7 +  -  -  -  -

Since, this series is sum of multiplication of corresponding terms of two series

\rm :\longmapsto\:1,3,5, -  -  -  -

and

\rm :\longmapsto\:3,5,7, -  -  -  -

As

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

So,

↝ nᵗʰ term of the given series is,

\rm :\longmapsto\:a_n =  {n}^{th}term \: of \: (1,3,5, -  - ) \times (3,5,7, -  -  - )

\rm :\longmapsto\:a_n = \bigg(1 + (n - 1)2 \bigg) \bigg(3 + (n - 1)2 \bigg)

\rm :\longmapsto\:a_n = \bigg(1 + 2n - 2 \bigg) \bigg(3 + 2n - 2 \bigg)

\rm :\longmapsto\:a_n = \bigg( 2n - 1 \bigg) \bigg(2n  + 1 \bigg)

\bf\implies \:a_n =  {4n}^{2} - 1

So, Sum of n terms of given series is

 \red{\rm :\longmapsto\:S_n = \displaystyle\sum_{n=1}^n a_n \: }

 \red{\rm :\longmapsto\:S_n = \displaystyle\sum_{n=1}^n ( {4n}^{2}  - 1) \: }

 \red{\rm :\longmapsto\:S_n =4 \displaystyle\sum_{n=1}^n {n}^{2}  - \displaystyle\sum_{n=1}^n 1 \: }

We know,

 \green{\boxed{ \tt{ \: \displaystyle\sum_{n=1}^n  {n}^{2} =  \frac{n(n + 1)(2n + 1)}{6} \: }}}

and

 \green{\boxed{ \tt{ \: \displaystyle\sum_{n=1}^n 1 = n}}}

So, on substituting the values, we get

 \red{\rm :\longmapsto\:S_n = 4 \times \dfrac{n(n + 1)(2n + 1)}{6}  - n \: }

 \red{\rm :\longmapsto\:S_n = 2 \times \dfrac{n(n + 1)(2n + 1)}{3}  - n \: }

 \red{\rm :\longmapsto\:S_n = \dfrac{2n(n + 1)(2n + 1)}{3}  - n \: }

So,

\boxed{ \tt{ \: 1.3 + 3.5 + 5.7 +  -  - n \: terms =  \frac{2n(n + 1)(2n + 1)}{3} - n \: }}

Hence,

  • Option (d) is correct

Additional Information :-

 \green{\boxed{ \tt{ \: \displaystyle\sum_{n=1}^n  {n} =  \frac{n(n + 1)}{2} \: }}}

 \green{\boxed{ \tt{ \: \displaystyle\sum_{n=1}^n  {n}^{3}  =   {\bigg[\dfrac{n(n + 1)}{2} \bigg]}^{2}  \: }}}

Similar questions