Solve this question please fast. Tomorrow I'm having test.So, please.....
Attachments:
Answers
Answered by
0
For diagram pls refer to attachment
Given ∠RPQ=30° and PR and PQ are tangents drawn from P to the same circle.
Hence PR = PQ [Since tangents drawn from an external point to a circle are equal in length]
Therefore, ∠PRQ = ∠PQR [Angles opposite to equal sides are equal in a triangle]
In ΔPQR ∠RQP + ∠QRP + ∠RPQ = 180° [Angle sum property of a triangle]
2∠RQP + 30° = 180° 2∠RQP = 150° ∠RQP = 75°
Hence, ∠RQP = ∠QRP = 75° ∠RQP = ∠RSQ = 75° [ By Alternate Segment Theorem]
Given, RS || PQ Therefore ∠RQP = ∠SRQ = 75° [Alternate angles]
∠RSQ = ∠SRQ = 75°
Therefore QRS is also an isosceles triangle. [Since sides opposite to equal angles of a triangle are equal.] ∠RSQ + ∠SRQ + ∠RQS = 180° [Angle sum property of a triangle]
75° + 75° + ∠RQS = 180°
150° + ∠RQS = 180°
Therefore, ∠RQS = 30°
Mark as Brailiest if it helps you...
Given ∠RPQ=30° and PR and PQ are tangents drawn from P to the same circle.
Hence PR = PQ [Since tangents drawn from an external point to a circle are equal in length]
Therefore, ∠PRQ = ∠PQR [Angles opposite to equal sides are equal in a triangle]
In ΔPQR ∠RQP + ∠QRP + ∠RPQ = 180° [Angle sum property of a triangle]
2∠RQP + 30° = 180° 2∠RQP = 150° ∠RQP = 75°
Hence, ∠RQP = ∠QRP = 75° ∠RQP = ∠RSQ = 75° [ By Alternate Segment Theorem]
Given, RS || PQ Therefore ∠RQP = ∠SRQ = 75° [Alternate angles]
∠RSQ = ∠SRQ = 75°
Therefore QRS is also an isosceles triangle. [Since sides opposite to equal angles of a triangle are equal.] ∠RSQ + ∠SRQ + ∠RQS = 180° [Angle sum property of a triangle]
75° + 75° + ∠RQS = 180°
150° + ∠RQS = 180°
Therefore, ∠RQS = 30°
Mark as Brailiest if it helps you...
Attachments:
Answered by
0
PQ=QR (Since tangents drawn from ext. pt. to circle is equal)
PQR is isosceles ∆.
So, RQP = QRP
So, 2 RQP + RPQ = 180°
=>RQP =QRP=75°
RQP =RSQ =75° (Angle in alternate segment theorem)
RQP = SRQ =75° (Alternate Angles)
So, 75°+75°+RQS = 180°
=> RQS = 30°
PQR is isosceles ∆.
So, RQP = QRP
So, 2 RQP + RPQ = 180°
=>RQP =QRP=75°
RQP =RSQ =75° (Angle in alternate segment theorem)
RQP = SRQ =75° (Alternate Angles)
So, 75°+75°+RQS = 180°
=> RQS = 30°
Similar questions