Math, asked by gugu9220, 1 month ago

Solve this question please
 \cos(a)  +  \cos(b)  +  \cos(c)  = 1 + 4  \sin( \frac{a}{2} )  \sin( \frac{b}{2} )  \sin( \frac{c}{2} )

Also show how you approached this question. Please don't spam. ​

Answers

Answered by mathdude500
84

Appropriate Question :-

 \sf \: If \: a + b + c = \pi, \: prove \: that

 \sf \: \cos(a) + \cos(b) + \cos(c) = 1 + 4sin\bigg[\dfrac{a}{2} \bigg]sin\bigg[\dfrac{b}{2} \bigg]sin\bigg[\dfrac{c}{2} \bigg]

 \green{\large\underline{\sf{Solution-}}}

Consider,

\rm :\longmapsto\:\cos(a) + \cos(b) + \cos(c)

We know,

\red{ \boxed{ \sf{ \:cosx + cosy = 2cos\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg]}}}

Using this, we get

\rm \:  =  \: 2cos\bigg[\dfrac{a + b}{2} \bigg]cos\bigg[\dfrac{a - b}{2} \bigg] + cosc

\rm \:  =  \: 2cos\bigg[\dfrac{\pi - c}{2} \bigg]cos\bigg[\dfrac{a - b}{2} \bigg] + cosc

\rm \:  =  \: 2cos\bigg[\dfrac{\pi}{2} - \dfrac{c}{2}  \bigg]cos\bigg[\dfrac{a - b}{2} \bigg] + cosc

We know,

\red{ \boxed{ \sf{ \:cos2x = 1 - 2 {sin}^{2}x}}}

So, using this, we get

\rm \:  =  \: 2sin\bigg[\dfrac{c}{2} \bigg]cos\bigg[\dfrac{a - b}{2} \bigg] + 1 - 2 {sin}^{2}\bigg[\dfrac{c}{2} \bigg]

\rm \:  = 1 +2sin\bigg[\dfrac{c}{2} \bigg]cos\bigg[\dfrac{a - b}{2} \bigg]- 2 {sin}^{2}\bigg[\dfrac{c}{2} \bigg]

\rm \:  = 1 +2sin\bigg[\dfrac{c}{2} \bigg]\bigg(cos\bigg[\dfrac{a - b}{2} \bigg]- sin\bigg[\dfrac{c}{2} \bigg]\bigg)

\rm \:  = 1 +2sin\bigg[\dfrac{c}{2} \bigg]\bigg(cos\bigg[\dfrac{a - b}{2} \bigg]- sin\bigg[\dfrac{\pi - (a + b)}{2} \bigg]\bigg)

\rm \:  = 1 +2sin\bigg[\dfrac{c}{2} \bigg]\bigg(cos\bigg[\dfrac{a - b}{2} \bigg]- sin\bigg[\dfrac{\pi}{2} - \bigg[\dfrac{a + b}{2} \bigg] \bigg]\bigg)

\rm \:  = 1 +2sin\bigg[\dfrac{c}{2} \bigg]\bigg(cos\bigg[\dfrac{a - b}{2} \bigg]- cos\bigg[\dfrac{a + b}{2} \bigg] \bigg)

\rm \:  = 1 +2sin\bigg[\dfrac{c}{2} \bigg]\bigg(cos\bigg[\dfrac{a}{2} - \dfrac{b}{2}  \bigg]- cos\bigg[\dfrac{a}{2} + \dfrac{b}{2}  \bigg] \bigg)

We know,

\red{ \boxed{ \sf{ \:cos(x - y) - cos(x + y) = 2sinxsiny}}}

So, using this, we get

\rm \:  =  \: 1 + 2sin\bigg[\dfrac{c}{2} \bigg] \times 2sin\bigg[\dfrac{a}{2} \bigg]sin\bigg[\dfrac{b}{2} \bigg]

\rm \:  =  \: 1 + 4sin\bigg[\dfrac{a}{2} \bigg]sin\bigg[\dfrac{b}{2} \bigg]sin\bigg[\dfrac{c}{2} \bigg]

Hence, Proved

Additional Information :-

\red{ \boxed{ \sf{ \:cosx  -  cosy = -  \:  2sin\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg]}}}

\red{ \boxed{ \sf{ \:sinx  -  siny =  2cos\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg]}}}

\red{ \boxed{ \sf{ \:sinx +  siny =  2cos\bigg[\dfrac{x  -  y}{2} \bigg]sin\bigg[\dfrac{x  +  y}{2} \bigg]}}}

\red{ \boxed{ \sf{ \:2cosxcosy = cos(x + y) + cos(x - y)}}}

\red{ \boxed{ \sf{ \:2sinxcosy = sin(x + y) + sin(x - y)}}}


Saby123: Nice
amansharma264: Good
Answered by Saby123
75

This is actually an identity .

When a + b + c = π , this holds true.

If a + b + c = π , a+b = π - c; b+c = π - a and c+a = π - b

cos theta = 1-sin²(theta/2). This is a half angle identity

cos a + cos b + cos c

>> 2cos[(a+b)/2] . cos [(a-b)/2] + [ 1-sin²(c/2)]

>> 2cos[(π-c)/2] . cos[(a-b)/2] + [1-sin²(c/2)]

Let us seperate the 1 from here

>> 1 + { 2cos[(π-c)/2] . cos[(a-b)/2] - sin²(c/2) }

Now , this term 2 cos [(π-c)]/2 becomes 2 sin(c/2) .

As cos [ π/2 - x ] = sin x

So

>> 1 + { 2sin(c/2) . cos [(a-b)]/2 - sin²(c/2) }

We can take sin(c/2) common

>> 1 + 2sin(c/2){ cos(a-b)/2 - sin(c/2) }

Now , c = π-a-b ( Check the second line)

>> 1 + sin(c/2) { 2cos(a-b)/2 - sin(π-a-b)/2 }

Let us focus on the term , sin (π-a-b)/2

>> sin [ π/2 - (a+b)/2 ]

Now , sin [ π/2 - x] = cos x

So this term becomes cos(a+b)/2

>> 1 + 2 sin(c/2) { cos (a-b)/2 - cos(a+b)2 }

>> 1 + 2 sin(c/2) { 2 sin(a/2)(b/2) }. { Identity }

>> 1 + 2×2 [ sin(a/2) . sin (b/2) . sin (c/2) ]

>> 1 + 4sin(a/2)sin(b/2)sin(c/2)

Hence we have proved the identity .

In case you had any problems in understanding till here , feel free to drop a message in my ínbox. I will be glad to help :)

__________________________________________


Anonymous: Fantastic! ^_^
Similar questions