solve this question plz
Attachments:
Answers
Answered by
2
Given x sin theta = y cos theta ------------------------ (1)
Given xsin^3 theta + ycos^3 theta = sintheta cos theta can be written as
x sin theta * sin^2 theta + y costheta * cos^2 theta = sin theta * cos theta ------ (2)
Substitute (1) in (2), we get
y cos theta * sin^2 theta + y cos theta * cos^2 theta = sin theta * cos theta
y cos theta(sin^2 theta + cos^2 theta) = sin theta * cos theta
y cos theta(1) = sin theta * cos theta
y = sin theta ------------------- (3)
Substitute (3) in (1), we get
x sin theta = y cos theta
x sin theta = sin theta * cos theta
x = cos theta ------------------- (4).
Now,
x^2 + y^2 = sin^2 theta + cos^2 theta
= 1.
LHS = RHS
Hope this helps!
Given xsin^3 theta + ycos^3 theta = sintheta cos theta can be written as
x sin theta * sin^2 theta + y costheta * cos^2 theta = sin theta * cos theta ------ (2)
Substitute (1) in (2), we get
y cos theta * sin^2 theta + y cos theta * cos^2 theta = sin theta * cos theta
y cos theta(sin^2 theta + cos^2 theta) = sin theta * cos theta
y cos theta(1) = sin theta * cos theta
y = sin theta ------------------- (3)
Substitute (3) in (1), we get
x sin theta = y cos theta
x sin theta = sin theta * cos theta
x = cos theta ------------------- (4).
Now,
x^2 + y^2 = sin^2 theta + cos^2 theta
= 1.
LHS = RHS
Hope this helps!
Answered by
9
HELLO DEAR,
x sin³A+ y cos³A = sinA.cosA
=> (x sin A). sin²A+ (y cos A). cos²A = sinA.cosA
=> (x sin A). sin²A+ (x sin A). cos²A = sinA.cosA
[Using x sin A - y cos A = 0 = x sin A = y cos A ]
=> (x sin A)(sin²A+ cos²A) = sinA.cosA
=> (x sin A)(1) = sinA.cosA
=> x = cosA
(x sin A = y cos A )
= >cos A. sin A = y cos A
[using the above result]
=> y = sin A
x² + y² = (cos A)² + (sin A)² = cos² A + sin² A = 1
I HOPE ITS HELP YOU DEAR,
THANKS
x sin³A+ y cos³A = sinA.cosA
=> (x sin A). sin²A+ (y cos A). cos²A = sinA.cosA
=> (x sin A). sin²A+ (x sin A). cos²A = sinA.cosA
[Using x sin A - y cos A = 0 = x sin A = y cos A ]
=> (x sin A)(sin²A+ cos²A) = sinA.cosA
=> (x sin A)(1) = sinA.cosA
=> x = cosA
(x sin A = y cos A )
= >cos A. sin A = y cos A
[using the above result]
=> y = sin A
x² + y² = (cos A)² + (sin A)² = cos² A + sin² A = 1
I HOPE ITS HELP YOU DEAR,
THANKS
rohitkumargupta:
thanks
Similar questions