Math, asked by RudranshuMishra7, 6 months ago

Solve this question plz, no spams.
Image is rotated...sorry for that. ​

Attachments:

Answers

Answered by ItzArchimedes
33

Solution :-

Taking LHS & simplifying

\to\displaystyle\sf\dfrac{1}{\frac{1}{\frac{1}{\frac{1}{x}+\frac{1}{2}}+\frac{1}{\frac{1}{x}+\frac{1}{2}}}+ \frac{1}{\frac{1}{\frac{1}{x}+\frac{1}{2}}+\frac{1}{\frac{1}{x}+\frac{1}{2}}}}

Write all the numerators above the least common denominator 2x .

\to\displaystyle\sf\dfrac{1}{\frac{1}{\frac{1}{\frac{2+xr}{2x}}+\frac{1}{\frac{2+x}{2x}}}+ \frac{1}{\frac{1}{\frac{2+x}{2x}}+\frac{1}{\frac{2+x}{2x}}}}

By simplifying the complex fraction

\to\displaystyle\sf\dfrac{1}{\frac{1}{\frac{2x}{{2+x}}+\frac{2x}{{2+x}}}+ \frac{1}{\frac{2x}{{2+x}}+\frac{2x}{{2+x}}}}

Adding like terms

\to\displaystyle\sf\dfrac{1}{\frac{1}{2[\frac{2x}{{2+x}}]}+ \frac{1}{2[\frac{2x}{{2+x}}]}}

\to\displaystyle\sf\dfrac{1}{\frac{1}{\frac{4x}{{2+x}}}+ \frac{1}{\frac{4x}{{2+x}}}}

\to\displaystyle\sf\dfrac{1}{{\frac{2+x}{{4x}}}+ {\frac{2+x}{2x}}}

Collecting the like terms,

\to\displaystyle\sf\dfrac{1}{2\times\frac{2+x}{4x}}

\sf\to\dfrac{2x}{2+x}

Now comparing with RHS

\sf\to\dfrac{2x}{2+x}=\dfrac{x}{36}

By cross-multiplying ,

\sf\to x[2+x]=2x[36]

\sf\to 2x + x^2 = 72x

\sf\to x^2 - 70x = 0

Taking common

\sf\to x[x-70]=0

\sf\to x - 70 =c 0

\sf\to x = 70

Hence, x = 70


MisterIncredible: Awesome
BrainlyPopularman: Good
ButterFliee: Awesome :)
TheMoonlìghtPhoenix: Marvellous!
amitkumar44481: Perfect :-)
ItzArchimedes: Thanks everyone :)
Answered by Anonymous
107

♣ Qᴜᴇꜱᴛɪᴏɴ :

Solve for x :

\sf{\dfrac{1}{\dfrac{1}{\dfrac{1}{\tfrac{1}{x}+\tfrac{1}{2}}+\dfrac{1}{\tfrac{1}{x}+\tfrac{1}{2}}}+\dfrac{1}{\dfrac{1}{\frac{1}{x}+\frac{1}{2}}+\dfrac{1}{\frac{1}{x}+\frac{1}{2}}}}=\dfrac{x}{36}}

★═════════════════★

♣ ᴀɴꜱᴡᴇʀ :

\large\boxed{\sf{x=70}}

★═════════════════★

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

\sf{\dfrac{1}{\dfrac{1}{\dfrac{1}{\tfrac{1}{x}+\tfrac{1}{2}}+\dfrac{1}{\tfrac{1}{x}+\tfrac{1}{2}}}+\dfrac{1}{\dfrac{1}{\frac{1}{x}+\frac{1}{2}}+\dfrac{1}{\frac{1}{x}+\frac{1}{2}}}}=\dfrac{x}{36}}

\sf{=\dfrac{1}{\dfrac{1}{\dfrac{1}{\frac{1}{x}+\frac{1}{2}}+\dfrac{1}{\frac{1}{x}+\frac{1}{2}}}+\dfrac{1}{\dfrac{4x}{x+2}}}}

\sf{=\dfrac{1}{\dfrac{1}{\dfrac{4x}{x+2}}+\dfrac{1}{\dfrac{4x}{x+2}}}}

\sf{=\dfrac{1}{\dfrac{x+2}{2x}}}

\sf{=\dfrac{2x}{x+2}}

Cross multiply :

\implies\sf{2x\cdot \:36=\left(x+2\right)x}

\implies\sf{72x=\left(x+2\right)x}

\implies\sf{72x-\left(x+2\right)x=\left(x+2\right)x-\left(x+2\right)x}

\implies\sf{72x-\left(x+2\right)x=0}

\implies\sf{-x\left(x-70\right)=0}

Using the Zero Factor Principle:

If ab = 0 then a = 0 or b = 0 ( or both a = 0 and b = 0)

\implies\sf{x=0}

\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}

\sf{x=0,\:x=70}

Since the equation is undefined for 0

\large\boxed{\sf{x=70}}


MisterIncredible: Brilliant
BrainlyPopularman: Nice
Anonymous: Awesome!
ButterFliee: Awesome :)
TheMoonlìghtPhoenix: Nice!
amitkumar44481: Good :-)
EliteSoul: Great
Similar questions