Math, asked by pratyush4211, 1 year ago

Solve This Question Quickly Guys

Answer Given

a =  \frac{67}{109}  \:  \:  \:  \: b =  \frac{ - 2}{109}
I want Explanation Solution​

Attachments:

Answers

Answered by Grimmjow
42

\mathsf{Given :\;\dfrac{2 + 3\sqrt{5}}{4 + 5\sqrt{5}}}

\mathsf{Multiplying\;numerator\;and\;denominator\;with\;4 - 5\sqrt{5},\;we\;get :}

\mathsf{\implies \dfrac{(2 + 3\sqrt{5})(4 - 5\sqrt{5})}{(4 + 5\sqrt{5})(4 - 5\sqrt{5})}}

★  We know that : (a + b)(a - b) = a² - b²

\mathsf{\implies \dfrac{(2)(4) - (2)(5\sqrt{5}) + (4)(3\sqrt{5}) - (5\sqrt{5})(3\sqrt{5})}{(4)^2 - (5\sqrt{5})^2}}

\mathsf{\implies \dfrac{8 - 10\sqrt{5} + 12\sqrt{5} - (15)(\sqrt{5})^2}{16 - 25(\sqrt{5})^2}}

\mathsf{\implies \dfrac{8 + 2\sqrt{5} - (15)(5)}{16 - 25(5)}}

\mathsf{\implies \dfrac{8 + 2\sqrt{5} - 75}{16 - 125}}

\mathsf{\implies \dfrac{2\sqrt{5} - 67}{-109}}

\mathsf{\implies \dfrac{67}{109} - \dfrac{2\sqrt{5}}{109}}

\mathsf{\implies \dfrac{67}{109} - \dfrac{2\sqrt{5}}{109} = a + b\sqrt{5}}

Comparing on both sides, We can notice that :

★  \mathsf{a = \dfrac{67}{109}}

★  \mathsf{b = \dfrac{-2}{109}}


siddhartharao77: Best Explanation
Grimmjow: Thank you Sir! :heart_eyes:
sabrinanandini2: Awesome, The best'
Grimmjow: Thank you! (^.^)
Similar questions