Math, asked by varadsolanke2006, 10 months ago

solve this question step by step​

Attachments:

Answers

Answered by sethrollins13
31

✰✰ ANSWER ✰✰

Given : -

  • BO Is bisector of \angle{CBE}
  • CO is bisector of \angle{BCD}

To Prove : -

  • \implies\tt{\angle{BOC}=90\degree-\dfrac{1}{2}\angle{BAC}}

Proof : -

\implies\tt{\angle{ABC}+\angle{CBE}=180\degree} (Linear Pair)

\implies\tt{y+\angle{CBE}=180\degree}

\implies\tt{\angle{CBE}=180-y}

BO is Bisector of \angle{CBE} : -

\implies\tt{\angle{CBO}=\dfrac{180-y}{2}\:and\:\angle{OBE}=\dfrac{180-y}{2}}

Similarly : -

\implies\tt{\angle{BCO}=\dfrac{180-z}{2}\:and\:\angle{DCO}=\dfrac{180-z}{2}}

Now , In Δ BOC : -

\implies\tt{\angle{CBO}+\angle{BCO}+\angle{BOC}=180\degree} (A.S.P)

\implies\tt{\dfrac{180-y}{2}+\dfrac{18p-z}{2}+\angle{BOC}=180\degree}

\implies\tt{\dfrac{180}{2}-\dfrac{y}{2}+\dfrac{180}{2}-\dfrac{z}{2}+\angle{BOC}=180\degree}

\implies\tt{90-\dfrac{y}{2}+\dfrac{90-z}{2}+\angle{BOC}=180\degree}

\implies\tt{180-\dfrac{y}{2}-\dfrac{z}{2}+\angle{BOC}=180\degree}

\implies\tt{\angle{BOC}=180-180+\dfrac{y}{2}+\dfrac{z}{2}}

\implies\tt{\angle{BOC}=\dfrac{y+z}{2}} -----(1)

Now , In Δ ABC : -

\implies\tt{x+y+z=180\degree} (Angle Sum Property)

\implies\tt{y+z=180-x} -----(2)

By Equation 1 and 2 : -

\implies\tt{\angle{BOC}=\dfrac{y+z}{2}-\dfrac{180-x}{2}}

\implies\tt{\angle{BOC}=\cancel\dfrac{180}{2}-\dfrac{x}{2}}

\implies\tt{\angle{BOC}=90-\dfrac{x}{2}}

\implies\tt{\angle{BOC}=90-\dfrac{1}{2}\angle{BAC}}

HENCE PROVED

Attachments:
Similar questions