Math, asked by Uniquedosti00017, 4 months ago

solve this question step by step ... no spamming
thank you ;)​

Attachments:

Answers

Answered by mathdude500
2

\large\underline\purple{\bold{Solution :-  }}

  • Let us assume that first term and common ratio of G P. series be A and R respectively.

Since, it is given that

 \bullet \:  \red{ \rm \:  {p}^{th}  \: term \: of \: GP \: is \:  \bf \: a}

 \rm :  \implies \:a_p \:  =  \: a

 \rm :  \implies \: {AR}^{p - 1}  = a

Taking log on both sides, we get

 \rm :  \implies \:loga \:  =  log(A {R}^{p - 1} )

 \boxed{ \purple {\rm :  \implies \: log(a)  =  log(A)  + (p - 1) log(R)}}

Similarly,

 \boxed{ \purple{ \rm :  \implies \: log(b)  =  log(A)  + (q - 1) log(R)}}

Similarly,

 \boxed{ \purple{ \rm :  \implies \: log(c)  =  log(A)  + (r - 1) log(R)  }}

Now, Consider

 \rm :  \implies \:\begin{array}{|ccc|}</p><p> log(a)  &amp; p &amp; 1 \\</p><p> log(b) &amp; q &amp; 1  \\</p><p> log(c)  &amp;r &amp; 1 \\</p><p>\end{array}

On substituting the values of log(a), log(b) and log(c), we get

 \rm :  \implies \:\begin{array}{|ccc|}</p><p> log(A)   + (p - 1) log(R) &amp; p &amp; 1 \\</p><p> log(A)   + (q - 1) log(R)  &amp; q &amp; 1  \\</p><p> log(A)   + (r - 1) log(R)   &amp;r &amp; 1 \\</p><p>\end{array}

Now, use splitting property of determinants, split along first Column, we get

 =  \rm \begin{array}{|ccc|}</p><p> log(A)  &amp; p &amp; 1 \\</p><p> log(A) &amp; q &amp; 1  \\</p><p> log(A)  &amp;r &amp; 1 \\</p><p>\end{array} \:  +   \rm \begin{array}{|ccc|}</p><p> (p - 1)log(R)  &amp; p &amp; 1 \\</p><p>(q - 1) log(R) &amp; q &amp; 1  \\</p><p>(r - 1) log(R)  &amp;r &amp; 1 \\</p><p>\end{array}

Taking log(A) common from first determinant and taking log(R) common from second determinant, So we get

 =  \rm  log(a) \begin{array}{|ccc|}</p><p> 1 &amp; p &amp; 1 \\</p><p> 1 &amp; q &amp; 1  \\</p><p> 1  &amp;r &amp; 1 \\</p><p>\end{array}  \: +  \: \rm \:   log(R) \begin{array}{|ccc|}</p><p> (p - 1)  &amp; p &amp; 1 \\</p><p>(q - 1)  &amp; q &amp; 1  \\</p><p>(r - 1)   &amp;r &amp; 1 \\</p><p>\end{array}

Since, column 1 and column 3 are identical in first determinant, so its value is 0.

 \rm :  \implies \: log(a)  \times 0 \: \: +  \: \rm \:   log(R) \begin{array}{|ccc|}</p><p> (p - 1)  &amp; p &amp; 1 \\</p><p>(q - 1)  &amp; q &amp; 1  \\</p><p>(r - 1)   &amp;r &amp; 1 \\</p><p>\end{array}

 \rm :  \implies \:OP \: C_1 \:  \longrightarrow \: C_1 \:   + \:  C_3

 \rm :  \implies \:0 \: \: +  \: \rm \:   log(R) \begin{array}{|ccc|}</p><p> p   &amp; p &amp; 1 \\</p><p>q &amp; q &amp; 1  \\</p><p>r    &amp;r &amp; 1 \\</p><p>\end{array}

Since, column 1 and column 2 are identical, so its value is 0.

 \rm :  \implies \: log(R)  \times 0

 \rm :  \implies \:0

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

Similar questions