Math, asked by Anonymous, 10 months ago

solve this question
1 +  \cos(a )  \div 1 -  \cos(a)  =  \tan({a}^{2} )  \div  ( \sec(a)  - 1)^{2}

Answers

Answered by Anonymous
54

Step-by-step explanation:

To Prove : {\sf{\ \ {\dfrac{1 + cos A}{1 - cos A}} = {\dfrac{tan^2 A}{(sec A - 1)^2}}}}

____________________________

R.H.S. = {\sf{\ \ {\dfrac{tan^2 A}{(sec A - 1)^2}}}}

____________________________

{\boxed{\tt{\bigstar \ \ Identity \ : \ 1 + tan^2 A = sec^2 A}}}

{\tt{From \ this, \ we \ get, \ [ tan^2 A = sec^2 A - 1}}

____________________________

\implies{\sf{ {\dfrac{sec^2 A - 1}{(sec A - 1)^2}}}}

____________________________

  • We can write this as :

\implies{\sf{ {\dfrac{(sec A)^2 - (1)^2}{(sec A - 1)^2}}}}

____________________________

{\boxed{\tt{\bigstar \ \ Identity \ : \ a^2 - b^2 = (a + b)(a - b)}}}

{\tt{Here, \ a = sec A, \ b = 1}}

____________________________

\implies{\sf{ {\dfrac{(sec A + 1)(sec A - 1)}{(sec A - 1)^2}}}}

____________________________

  • Cancelling the common term.

\implies{\sf{ {\dfrac{sec A + 1}{sec A - 1}}}}

____________________________

{\boxed{\tt{\bigstar \ \ sec A = {\dfrac{1}{cos A}}}}}

____________________________

\implies{\sf{ {\dfrac{ {\dfrac{1}{cos A}} + 1}{ {\dfrac{1}{cos A}} - 1}}}}

____________________________

\implies{\sf{ {\dfrac{ {\dfrac{1 + cos A}{cos A}} }{ {\dfrac{1 - cos A}{cos A}} }}}}

____________________________

\implies{\sf{ {\dfrac{1 + cos A}{1 - cos A}}}}

____________________________

= L.H.S.

Hence, proved !!

Answered by Anonymous
79

QuesTioN :

\normalsize\sf\frac{1 - cosA}{1 + cosA} = \frac{Tan^2A}{(secA - 1)^2}

AnswEr :

\underline{\textbf{Taking \: Right \: hand \: side-}}

\normalsize\ : \implies\sf\frac{Tan^2A}{(secA - 1)^2}

\scriptsize\sf{\: \: \: \: \: \:( \therefore\ \: \red{Tan^2A =  sec^2A - 1 }) }

\normalsize\ : \implies\sf\frac{sec^2A - 1}{(sec^2 - 1)}

\scriptsize\sf{\: \: \: \: \: \:( \therefore\ \: \red{Using \: algebric \:  identities}) }

\normalsize\ : \implies\sf\frac{(secA + 1) \cancel{(secA - 1)}}{\cancel{(secA -1)} (secA -1)} \\ \\ \normalsize\ : \implies\sf\frac{secA + 1}{secA - 1 }

\scriptsize\sf{\: \: \: \: \: \:( \therefore\ \: \red{SecA = \frac{1}{CosA}}) }

\normalsize\ : \implies\sf\frac{\frac{1}{cosA} + 1}{\frac{1}{cosA} - 1} \\ \\ \normalsize\ : \implies\sf\frac{\frac{1 + cosA}{\cancel{cosA}}}{\frac{1 - cosA}{\cancel{cosA}}} \\ \\ \normalsize\ : \implies\sf\frac{1 + cosA}{1 - cosA} \\ \\ \normalsize\ : \implies\sf\ Right \: hand \: side \\ \\ \normalsize\ : \implies\sf\ L.H.S = R.H.S

\normalsize\ : \implies{\underline{\boxed{\sf \green{Hence \: prove \: !! }}}}

 \rule{100}2

Some Important related to it :

\boxed{\begin{minipage}{6cm} Important  Trigonometric identities :- \\ \\ $\: \: 1)\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\cos^2\theta=1-\sin^2\theta \\ \\ 4)1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5) \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\sec^2\theta=1+\tan^2\theta \\ \\ 8)\sec^2\theta-\tan^2\thetha=1 \\ \\ 9)\tan^2\theta=\sec^2\theta-1$\end{minipage}}

Similar questions