Math, asked by vishal6311, 1 year ago

solve this question

 \sqrt{6 +  \sqrt{6 +  \sqrt{6 +  \sqrt{6} } } }

Answers

Answered by LovelyG
14

Correct question: If x =  \sqrt{6 + \sqrt{6 + \sqrt{6 + \sqrt{6} } } }... \infty. Find the value of x.

Answer:

\large{\underline{\boxed{\sf x = 3}}}

Step-by-step explanation:

Let x =  \sqrt{6 + \sqrt{6 + \sqrt{6 + \sqrt{6} } } }... \infty

Thus,

 \sf x =  \sqrt{6 +  \sqrt{6 +  \sqrt{6 +  \sqrt{6} } } }  ..... \infty \\  \\ \bf on \: squaring \: both \: sides :  \\ \\ \implies \sf x {}^{2}  = 6+x \\  \\ \implies \sf x {}^{2}  - x - 6= 0

We got a quadratic equation here, on comparing the given equation with ax² + bx + c, so

  • a = 1
  • b = - 1
  • c = - 6

Discriminant = b² - 4ac

⇒ D = (-1)² - 4 * 1 * (-6)

⇒ D = 1 + 24

⇒ D = 25

 \tt x =  \frac{ - b \pm  \sqrt{D} }{2a}  \\  \\ \implies \tt x =  \frac{ - ( - 1)  \pm \sqrt{25} }{2 \times 1}  \\  \\ \implies \tt x =  \frac{1  \pm 5}{2}

Therefore,

\implies \tt x = \frac{1+5}{2} = \frac{6}{2} = 3\\  \\ \implies \tt x = \frac{1-5}{2} = \frac{-4}{2} = - 2

Thus, neglecting the negative value. We get x = 3.

Hence, the value of x is 3.


vishal6311: wrong
vishal6311: this question, answer is 3
sswaraj04: x^2=6+x not 6x ; it will give x=3,-2 so x=3
Anonymous: Awesome !
LovelyG: Thank you! ❤️"
Similar questions