Math, asked by iemsayush7a20, 1 month ago

Solve this question to be marked as the Brainlest!!​

Attachments:

Answers

Answered by Anonymous
51

\\ \\{\Large{\underline{\underline{\bigstar\:\:\:\:{\pmb{\sf{Solution\::}}}}}}}

\sf\longmapsto \:\:\:\: \frac{1- \sin\theta\cos\theta}{\cos \theta\big(\sec \theta-\cosec\theta\big)}\cdot\frac{\sin^2\theta-\cos^2\theta}{\sin^3+\cos^3\theta}\\ \\

\sf\longmapsto \:\:\:\: \frac{\cancel{\big(1-\sin\theta\cos\theta\big)}}{1-\cos\theta\cosec\theta}\cdot\frac{\big(\sin\theta-\cos\theta\big)\cancel{\big(\sin\theta+\cos\theta\big)}}{{\cancel{\big({\sin\theta+\cos\theta\big)}\big(\sin^2\theta+\cos^2\theta-\sin\theta\cos\theta\big)}}}\:\:\:\:\:\:\:\big[\because \: \bf {a^3+b^3=(a+b)(a^2-ab+b^2)}\big]\\ \\\sf\longmapsto \:\:\:\: \frac{\sin\theta\cancel{\big({\sin\theta-\cos\theta}}\big)}{\cancel{\big({\sin\theta-\cos\theta}\big)}}\\ \\

\tt\longmapsto \:\:\:\:\blue{\sin\theta}\:\:\:\:\:\:\bf proved.\\ \\

 \frak{\colorbox{aqua}{BriefReflexion}}

Attachments:
Similar questions