Math, asked by TehleelTanveer2818, 3 months ago

Solve this question using Phythagoras Theorem​

Attachments:

Answers

Answered by Anonymous
16

\huge\tt\underline{Answer!!!} \\  \\  \mathtt{Hypotenuse \:  =25 } \:  \:  \:  \:  \\  \mathtt{perpendicuar = 24} \\  \mathtt{base =   \:  \:  ? } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  { \underline{ \boxed{ \mathtt{Pythagoras \: theoram  \colon  {h}^{2} =  {p}^{2}  +  {b}^{2}  }}}} \\  \\  \rightarrow \sf \: (25) ^{2}  = (24) ^{2}  +  {b}^{2}  \\  \\  \rightarrow \sf \: 625 = 576 +  {b}^{2}  \:  \:  \:  \:  \:  \\  \\  \rightarrow \sf \: 625 - 576 =  {b}^{2}  \:  \:  \:  \\  \\  \rightarrow \sf \: 49 =  {b}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\ \\  \rightarrow \: \sf b =  7 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \sf{Base = 7 \: cm} \:  \:  \:  \:  \:  \:  \:  \:  \:

 \\

 \mathbb{♡♡ \: SABRINA \: ♡♡}

Answered by BrainlyRish
6

Diagram :

\setlength{\unitlength}{1.5cm}\begin{picture}(6,2)\linethickness{0.5mm}\put(7.7,2.9){\large\sf{A}}\put(7.7,1){\large\sf{B}}\put(10.6,1){\large\sf{C}}\put(8,1){\line(1,0){2.5}}\put(8,1){\line(0,2){1.9}}\qbezier(10.5,1)(10,1.4)(8,2.9)\put(7.1,2){\sf{\large{24}}}\put(9,0.7){\sf{\large{?}}}\put(9.4,1.9){\sf{\large{25 }}}\put(8.2,1){\line(0,1){0.2}}\put(8,1.2){\line(3,0){0.2}}\end{picture}

⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀

❍ Let's consider measure of Base , Perpendicular and Hypotenuse be in units .

⠀⠀⠀⠀⠀

\frak{Given\:} \begin{cases} \sf{Base = ?}\\\sf{Perpendicular \:= 24 \:unit}\\\sf{Hypotenuse \:=\:25\:unit }\end{cases}\\\\\\

⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀

Need To Find : Base of Triangle.

⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀

\bigstar \underline {\bf{ By\:Pythagoras \:Theorem \::}}\\

⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀

\qquad\qquad:\implies {\sf{ (Hypotenuse)^{2} = (Base)^{2} + (Perpendicular)^{2} }}\\

Or ,

\qquad\qquad:\implies {\sf{ (AC)^{2} = (CB)^{2} + (AB)^{2} }}\\\\

\qquad\qquad:\implies {\sf{ (AC)^{2} - (AB)^{2} = (CB)^{2} }}\\\\

\qquad\qquad:\implies {\sf{ (25)^{2} - (24)^{2} = (CB)^{2} }}\\\\

\qquad\qquad:\implies {\sf{ 625 - 576 = (CB)^{2} }}\\\\

\qquad\qquad:\implies {\sf{ 49 = (CB)^{2} }}\\\\

\qquad\qquad:\implies {\sf{ \sqrt {49} = CB }}\\\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  CB \:or \:Base \: = 7\: unit}}}}\:\bf{\bigstar}\\\\

⠀⠀⠀⠀⠀

Therefore,

⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {  Hence ,\:CB\:or\:Base  \:of\:Right \:Angled \:Triangle \:is\:\bf{7\:}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions