Math, asked by swateeee, 10 months ago

solve this question with detailed explanation plz​

Attachments:

Answers

Answered by rishu6845
6

Answer:

\boxed{\pink{\huge{3}}}

Step-by-step explanation:

\bold{Given}\longrightarrow \\  log_{4}(2 log_{3}(1 +  log_{2}(1 + 3 log_{3}(x) ) ) )  =  \dfrac{1}{2}

\bold{To \: find}\longrightarrow \\ value \: of \: x

\bold{Concept}\longrightarrow \: used \\ if \\  log_{m}(x)  = n \\  =  > x =  {m}^{n}

\bold{Solution}\longrightarrow \\  log_{4}(2 log_{3}(1 +  log_{2}(1 + 3 log_{3}(x) ) ) )  =  \dfrac{1}{2}  \\  =  > 2 log_{3}(1 +  log_{2}(1 + 3 log_{3}(x) ) )  =  {(4)}^{ \frac{1}{2} }

 =  > 2 log_{3}(1 +  log_{2}(1 + 3 log_{3}(x) ) )  =  { ({2}^{2}) }^{ \frac{1}{2} }

 =  > 2 log_{3}(1 +  log_{2}(1 + 3 log_{3}(x) ) )  = 2 \\ 2 \: is \: cancel \: out \: from \: both \: sides

 =  >  log_{3}(1 +  log_{2}(1 + 3 log_{3}(x) ) )  = 1

 =  > 1 +  log_{2}(1 + 3 log_{3}(x) ) =  {3}^{1}

 =  >  log_{2}(1 + 3 log_{3}(x) )  = 3 - 1

 =  >    log_{2}(1 + 3 log_{3}(x) )  = 2

 =  > 1 + 3 log_{3}(x)  =  {2}^{2}

 =  > 3 log_{3}(x)  = 4 - 1

 =  > 3 log_{3}(x)  = 3

 =  >  log_{3}(x)  = 1

 =  > x =  {3}^{1}

 =  > x = 3

Similar questions