Math, asked by Somya2861, 4 months ago

Solve this question with explanation ⬆⬆
 \huge{ \frac{ {2}^{ - n}\times  {8}^{2n + 1}  \times  {16}^{2n} } { {4}^{3n} } }

Kindly do not spam..❌️​

Attachments:

Answers

Answered by Anonymous
106

Question:

Solve :

\sf\dfrac{2^{-n}\times8^{2n+1}\times16^{2n}}{4^{3n}}

Solution:

\sf\dfrac{2^{-n}\times8^{2n+1}\times16^{2n}}{4^{3n}}

Use Identity

\sf\green{(a^m)^n=a^{mn}}

\sf\implies\dfrac{2^{-n}\times[(2)^3]^{2n+1}\times[(2^4)]^{2n}}{[(2^2)]^{3n}}

\sf\implies\dfrac{2^{-n}\times2^{6n+3}\times2^{8n}}{2^{6n}}

Use Identity

\sf\purple{a^m\times\:a^n=a^{m+n}}

\sf\implies\dfrac{2^{-n+6n+3+8n}}{2^{6n}}

\sf\implies\dfrac{2^{13n+3}}{2^{6n}}

Use Identity

\blue{\dfrac{a^m}{a^n}=a^{m-n}}

\sf\implies\:2^{(13n+3)-6n}

\sf\implies\:2^{7n+3}

______________

Formula's :

 \sf1)y {}^{m}  \times y {}^{n}  = y {}^{m + n}

 \sf2) \dfrac{y {}^{m} }{y {}^{n} }  = y {}^{m - n}

 \sf3)y {}^{0}  = 1

Answered by DARLO20
39

{\underline{\red{\bf{Use\:the\:following\:identities\:;-}}}} \\

(1)\:{\underline{\boxed{\bf{\blue{a^m\times{a^n}\:=\:a^{m\:+\:n}\:}}}}} \\

(2)\:{\underline{\boxed{\bf{\purple{\dfrac{a^m}{a^n}\:=\:a^{m\:-\:n}\:}}}}} \\

(3)\:{\underline{\boxed{\bf{\orange{\dfrac{1}{x^n}\:=\:x^{-n}\:}}}}} \\

(4)\:{\underline{\boxed{\bf{\color{peru}{(a^m)^n\:=\:a^{m\times{n}}\:}}}}} \\

━─━─━─━─━─━─━─━─━─━─━─━─━─━─━

\Large{\underline{\bf{\color{cyan}CaLcUlAtIoN,}}} \\ \\

\pink\bigstar\:\:\bf{\dfrac{2^{-n}\times{8^{2n\:+\:1}}\times{16^{2n}}}{4^{3n}}\:} \\ \\

\longmapsto\:\:\bf{\dfrac{2^{-n}\times{\Big\{(4\times{2})^{2n\:+\:1}\Big\}}\times{\Big\{(4\times{4})^{2n}\Big\}}}{4^{3n}}\:} \\ \\

\longmapsto\:\:\bf{\dfrac{2^{-n}\times{2^{2n\:+\:1}}\times{4^{2n\:+\:1}}\times{4^{2n}}\times{4^{2n}}}{4^{3n}}\:} \\ \\

\longmapsto\:\:\bf{\Big(2^{-n}\times{2^{2n\:+\:1}}\Big)\times\Big(4^{2n\:+\:1}\times{4^{2n}}\times{4^{2n}}\times{4^{-3n}}\Big)\:} \\ \\

\longmapsto\:\:\bf{2^{(-n\:+\:2n\:+\:1)}\times{4^{(2n\:+\:1\:+\:2n\:+\:2n\:-\:3n)}}\:} \\ \\

\longmapsto\:\:\bf{2^{n\:+\:1}\times{4^{(6n\:-\:3n\:+\:1)}}\:} \\ \\

\longmapsto\:\:\bf{2^{n\:+\:1}\times{4^{3n\:+\:1}}\:} \\ \\

\longmapsto\:\:\bf{2^{n\:+\:1}\times{\Big\{(2\times{2})^{3n\:+\:1}\Big\}}\:} \\ \\

\longmapsto\:\:\bf{2^{n\:+\:1}\times{2^{3n\:+\:1}}\times{2^{3n\:+\:1}}\:} \\ \\

\longmapsto\:\:\bf{2^{(n\:+\:1\:+\:3n\:+\:1\:+\:3n\:+\:1)}\:} \\ \\

\longmapsto\:\:\bf\green{2^{7n\:+\:3}\:} \\ \\

Similar questions