Biology, asked by kk123kk, 11 months ago

solve this questions
✌ 100 points ​

Attachments:

Answers

Answered by Sharad001
32

Question :-

(1)  \sf \int \red{  \sqrt{ \sin \phi} } \cos \phi  \:  \green{ d \phi \: } \\

Of limit 0 to π/2

i will take limits after some steps -

Solution :-

 \leadsto \sf \: let \:  \sin \phi \:  =  \: t \\  \\  \sf \green{ differentiate \: with} \: \red{ respect \: to \: t \:}  \\  \\  \leadsto \sf \cos \phi \:  =  \frac{dt}{d \phi}  \\  \\  \leadsto \sf  \cos \phi \: d \phi \:  = dt \\  \\   \therefore \\  \\  \rightarrow  \sf \: \:  \int \red{ \sqrt{t} } \: dt \\  \\  \to \:   \int \sf   {t}^{ \frac{1}{2} }  \: dt \\  \\  \to \sf   \frac{ {t}^{ \frac{1}{2}  + 1} }{ \frac{1}{2}  + 1}  + c \\  \\ \sf \:  now \: changing \: limits \:  \\( \star \sf \:  upper \: limit) if \:  \phi \:  =  \frac{ \pi}{2}  \\  \\  \to \sf  \sin  \frac{ \pi}{2}  = t \\  \\  \to \boxed{ \sf t = 1} \\  \\  \star ( \sf \: lower \: limit \: ) \\  \\  \to \:  \phi \:  = 0 \\  \\  \to \:  \sin 0 = t \\  \to \boxed{ \sf t = 0} \\  \\  \sf \: now \: taking \: limits \:  \\  \\  \to \:  \frac{ {1}^{ \frac{3}{2} } }{ \frac{3}{2} }  -  \frac{ {0}^{ \frac{3}{2} } }{ \frac{3}{2} }  \\  \\  \to \:  \frac{2}{3}  \:

____________________

(2) \:  \int \sf \frac{ \sin x}{1 +  { \cos}^{2}x }  \: dx \\

of limit 0 to π/2

Solution :-

We have

 \to  \int \sf \frac{ \sin x}{1 +  { \cos}^{2}x }  \: dx \\  \:  \\ \sf put \:  \:  \sf  \cos x \:  = t \\  \\ \sf differentiate \: with \: respect \:to \: t \\  \\  \to \sf   - \sin x \: dx = dt \\  \\  \therefore \sf  changing \: limits \:  \\  \\  \star \sf \: upper \: limit \:  \\  \to \:  x =   \frac{ \pi}{2}  \\  \\  \to \:  \cos  \frac{ \pi}{2}  = t \:  = 0 \\  \\  \star \sf \: lower \: limit \:  \\  \\  \to \: x = 0 \\  \\  \to \sf  \cos 0 = t = 1 \\  \\  \therefore \:  \\  \to \sf -  \int \:  \frac{1}{1 +  {t}^{2} } \:  dt \\  \\  \to \:  -  { \tan}^{ - 1} t  \\  \\ \sf taking \: limit \:  \\  \\  \to \:  -    \{ \: { \tan}^{ - 1} 1 -  { \tan}^{ - 1} 0 \} \\  \\  \to \:  -  \frac{ \pi}{4} \\ \\ \large \sf{ \red{ BRAINLIST } }

Hope it helps you .

Answered by aadishree7667
4

Explanation:

hello dude refer to pic above mate.

have a good day dued ✌

Attachments:
Similar questions