Math, asked by mandarjoshi079, 1 year ago

SOLVE THIS QUESTIONS PLEASE.

WILL BE MARKED AS BRAINLIEST...

Attachments:

Answers

Answered by TheLifeRacer
4
Hii !!

Solution is here chote !!

(1 ) from LHS

(1 - sin²¢ ) sec²¢

= cos²¢ × sec²¢

= cos²¢ × 1/cos²¢ = 1 RHS proved

__________________________
(2)

from LHS ,

( 1 + tan²¢ ) cos²¢

= sec²¢ × cos²¢

= 1/cos²¢ × cos²¢ = 1 RHS prooved

____________________________

(3)

From LHS

(1 + tan²¢ ) ( 1 + sin¢ ) ( 1 - sin¢ ) ( question misstyped)

= sec²¢ ( 1 - sin²¢ )

= sec²¢ × cos²¢

= sec²¢ × 1/sec²¢ = 1 RHS prooved

____________________________
(4)

from LHS

{(2cos²¢ + 2/( 1 + cot²¢ )}


= 2cos²¢ + 2/ cosec²¢

= 2cos²¢ + 2sin²¢

= 2 ( cos²¢ + sin²¢ )

= 2 RHS prooved

__________________________

Hope it helps you !!!

@muskraj❤





mandarjoshi079: bro awesome ...thank you
Answered by rupali8153gmailcom2
3
using \: \: identity \: \: 1 - { \sin( \alpha ) }^{2} = ){ \cos( \alpha ) }^{2}

we \: get \: \\
1)
 { \cos( \alpha ) }^{2} \times { \sec( \alpha ) }^{2} = 1 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ as \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: ( \cos( \alpha ) \times \sec( \alpha ) ) \\ hence \: proof

now \: 2

using \: identity \: 1 + { \tan( \alpha ) }^{2} = { \sec( \alpha ) }^{2}

we \: get

 { \sec( \alpha ) }^{2} \times { \cos( \alpha ) }^{2} = 1 \: \: \: hence \: proof
Attachments:
Similar questions