Math, asked by Anonymous, 10 months ago

Solve this questions without any spamming please..... If possible then please show it with explanation , don't write simply answers

Attachments:

Answers

Answered by Glorious31
67

Questions :

  • Find out the cube roots of
  1. (-1.2)
  2. 5
  3. -5/3
  4. 0.03

  • Write the numbers in their cubic forms
  1. -1331
  2. -0.000008
  3. 729/-216
  4. 15.625

  • Find the smallest number to be multiplied to the number 2560 to get a perfect cube . Also find out the cube root of the number obtained.

  • By which number should 8788 be divided to get a perfect cube ? Also find out the cube root of the number so obtained.

  • Find cube roots of the following :
  1. 5832
  2. -474552

  • Find the cube root through estimation method :
  1. 10648
  2. 91125

Answers :

  • Cube roots of :
  1. (-1.2)
  2. 5
  3. -5/3
  4. 0.03

=> Cube root : The number when reduced 3 products by itself gives us a cube root.

1. \sf{(-1.2)}

\longrightarrow{\sf{(-1.2)}}

\longrightarrow{\sf{\sqrt[3]{x} = {x}^{\dfrac{1}{3}}}}

\longrightarrow{\sf{{(-1.2)}^{\dfrac{1}{3}}}}

\implies{\sf{-1.062658...}}

_________________

2. \sf{5}

\longrightarrow{\sf{5}}

\longrightarrow{\sf{\sqrt[3]{x} = {x}^{\dfrac{1}{3}}}}

\longrightarrow{\sf{{(5)}^{\dfrac{1}{3}}}}

\implies{\sf{1.70997...}}

__________________

3. \sf{\dfrac{-5}{3}}

\longrightarrow{\sf{(\dfrac{-5}{3})}}

\longrightarrow{\sf{\sqrt[3]{x} = {x}^{\dfrac{1}{3}}}}

\longrightarrow{\sf{{(\dfrac{-5}{3})}^{\dfrac{1}{3}}}}

\implies{\sf{1.185631...}}

___________________

4. \sf{0.03}

\longrightarrow{\sf{(0.03)}}

\longrightarrow{\sf{\sqrt[3]{x} = {x}^{\dfrac{1}{3}}}}

\longrightarrow{\sf{{(0.03)}^{\dfrac{1}{3}}}}

\implies{\sf{0.31072325....}}

_________________

  • Write in cube form
  1. -1331
  2. -0.000008
  3. 729/-216
  4. 15.625

=> Cubic form: The number when written in the power of 3 or with a cubic power. The following answers are on the basis of prime factorization.

1. \sf{(-1331)}

\longrightarrow{\sf{(-11) \times (-11) \times (-11) \implies (-1331)}}

\implies{\sf{\sqrt[3]{11} = (-1331)}}

_________________

2. \sf{(-0.000008)}

\longrightarrow{\sf{(-0.02) \times (-0.02) \times (-0.02) \implies (-0.000008)}}

\implies{\sf{\sqrt[3]{-0.02} = (-0.000008)}}

_________________

3. \sf{(\dfrac{729}{-216})}

\longrightarrow{\sf{(\dfrac{9}{-6}) \times (\dfrac{9}{-6}) \times (\dfrac{9}{-6}) \implies (\dfrac{729}{-216})}}

\implies{\sf{\sqrt[3]{\dfrac{9}{-6}} = (\dfrac{729}{-216})}}

_________________

4. \sf{(15.625)}

\longrightarrow{\sf{(2.5) \times (2.5) \times (2.5) \implies (15.625)}}

\implies{\sf{\sqrt[3]{2.5} = (15.625)}}

  • Find the smallest number to be multiplied to 2560 to get a perfect cube. Also write the cube root of the number so obtained.

=> Following the prime factorization method we find that 5 is left unpaired and we must multiply 5 * 5 with 2560 in order to get a perfect cube .

5* 5 = 25

25 * 2560 = 64000

\longrightarrow{\sf{64000 = \sqrt[3]{40}}}

_________________

  • By which number should 8788 be divided to get a perfect cube ? Also find out the cube root of the number so obtained.

=> Following the prime factorization method we find out that 2 is left unpaired and hence we will divide 2*2 with 8788 to make it a perfect cube.

2*2 = 4

8788 ÷ 4 = 2197

\longrightarrow{\sf{2197 = \sqrt[3]{13}}}

__________________

  • Find cube roots :
  1. 5832
  2. -474552

=>

1) By prime factorization we find :

2*2*2*3*3*3*3*3*3

So taking pairs = 2*3*3 => 18

\longrightarrow{\sf{ 5832 = \sqrt[3]{18}}}

_________________

2) By prime factorization we find :

-2*-2*-2*-3*-3*-3*-13*-13*-13

Taking as pairs = -2*-3*-13 =>-78

\longrightarrow{\sf{-474552 = \sqrt[3]{-78}}}

_________________

  • Find cube roots through estimation method :
  1. 10648
  2. 91125

=>

1) Divide the number into two parts :

10 and 648

648 = 8 = \sf{{2}^{3}}

So the first number is 2.

Second part : 8 > 10 > 27

\longrightarrow{\sf{{2}^{3} > {10}^{} > {3}^{3}}}

So it's 22 by taking 2 twice.

_________________

2) Divide into two parts :

91 and 125

125 = \sf{{5}^{3}}

91 = 64 is nearest => \sf{{4}^{3}}

Highest cube in both = 91

So , the answer is 45 by taking 4 and 5 as the digits.


Anonymous: Awesome
Answered by Anonymous
21

Find out the cubes of -

 \huge\rm\red { Question }

  •  \sf\red { - 1.2 }

 \huge\rm\green { Solution }

 \sf { ☞ ( - {1.2})^{3}  = ( \frac{    \cancel { { - 12}}  \: {}^{ - 6} }{ \cancel{10} {}^{ \: 5} } ) {}^{3}  = (  \frac{ - 6}{5} ) {}^{ 3} }

 \sf { ☞  \frac{ (- 6)  \times ( - 6) \times ( - 6)}{ 5 \times5 \times 5}  =  \frac{ - 216}{125}  = 1.728 }

 {\boxed {\bf {\red { ( - 1.2) {}^{3}  = 1.728 \: }}}}

_____________________

 \huge\rm\red { Question }

  •  \sf\red { 5}

 \huge\rm\green { Solution }

 \sf {  ☞{(5)}^{3}  = 5 \times 5 \times 5 = 125 }

 {\boxed {\bf {\red { ( 5) {}^{3}  = 125}}}}

______________________

 \huge\rm\red { Question }

  •  \sf\red { \frac{-5}{3} }

 \huge\rm\green { Solution }

 \sf {☞ ( { \frac{ - 5}{3} )}^{3}  =  \frac{( - 5) {}^{3} }{ { (3) }^{3} } }

 \sf { ☞ \frac{( - 5) \times ( - 5) \times ( - 5)}{  3 \times 3 \times 3}  =  \frac{ - 127}{27}  =  - 4.629...}

 {\boxed {\red {\bf { \frac{-5}{3}^{3}  = \frac{ - 127}{27}  }}}}

____________________

 \huge\rm\red { Question }

  •  \sf\red { 0.03 }

 \huge\rm\green { Solution }

 \sf {☞ \: (0.03) {}^{3}  = (  { \frac{3}{100} )}^{3} =  \frac{ {(3)}^{3} }{(100) {}^{3} }}

 \sf { ☞  \:  \frac{3 \times3 \times  3}{100  \times 100 \times 100}  =  \frac{27}{1000000}  = 0.000027}

 {\boxed {\bf {\red { {(0.03)}^{3}  = 0.000027 }}}}

_________....

Write down the following numbers in their cubic form -

 \huge\rm\red { Question }

  •  \sf\red { - 1331 }

 \huge\rm\green { Solution }

Resolving -1331 into prime factors,

⠀⠀⠀⠀⠀⠀⠀⠀⠀11 | 1331

⠀⠀⠀⠀⠀⠀⠀⠀⠀11 | 121

⠀⠀⠀⠀⠀⠀⠀⠀⠀11 | 11

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ | 1

By prime factorization we get -

 ☞ \sf {  - 1331 = \underline{ ( - 11) \times ( - 11) \times ( - 11)} }

☞ \sf { - 1331 =  {( - 11)}^{3} }

 {\boxed {\red {\bf { -1331 = {( - 11)}^{3} }}}}

__________________

 \huge\rm\red { Question }

  •  \sf\red { - 0.000008 }

 \huge\rm\green { Solution }

We know,

 \sf { -0.000008 = \frac{-8}{1000000} }

So, we'll resolve both denominator and numerator into prime factors.

Resolving -8 and 1000000 into prime factors,

⠀⠀⠀⠀⠀⠀2 | 8⠀⠀⠀⠀⠀⠀⠀⠀⠀10 | 1000000

⠀⠀⠀⠀⠀⠀2 | 4⠀⠀⠀⠀⠀⠀⠀⠀⠀10 | 100000

⠀⠀⠀⠀⠀⠀2 | 2⠀⠀⠀⠀⠀⠀⠀⠀⠀10 | 10000

⠀⠀⠀⠀⠀⠀⠀ | 1⠀⠀⠀⠀⠀⠀⠀⠀⠀10 | 1000

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀10 | 100

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀10 | 10

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀1

By prime factorization we get-

 ☞ \sf {  - 8 = \underline { ( - 2) \times ( - 2)  \times ( - 2)} = ( - 2) {}^{3}  }

and,

 ☞ \sf { 1000000 =  \underline{10 \times 10 \times 10} \times  \underline {10 \times 10 \times 10} }

 \sf {= {10 }^{3} × {10}^{3} = ( {100)}^{3}  }

So we can say that,

 \sf {  - 0.000008 =  \frac{ - 8}{1000000}  =  \frac{ {( - 2)}^{3} }{ {(100)}^{3}} ={( \frac{ - 2}{100} )}^{3}  = {( - 0.02)}^{3} }

 {\boxed {\red {\bf { - 0.000008 = {( - 0.02)}^{3} }}}}

_____________________

 \huge\rm\red { Question }

  •  \sf\red { \frac{729}{ - 216}  }

 \huge\rm\green { Solution }

Again as the previous question we'll resolve both denominator and numerator in prime factors-

Resolving 729 and -216 in prime factors,

⠀⠀⠀⠀⠀3 | 729⠀⠀⠀⠀⠀⠀2 | 216

⠀⠀⠀⠀⠀3 | 243⠀⠀⠀⠀⠀⠀ 2 | 108

⠀⠀⠀⠀⠀3 | 81⠀⠀⠀⠀⠀⠀⠀ 2 | 54

⠀⠀⠀⠀⠀3 | 27⠀⠀⠀⠀⠀⠀⠀3 | 27

⠀⠀⠀⠀⠀3 | 9⠀⠀⠀⠀⠀⠀⠀ 3 | 9

⠀⠀⠀⠀⠀3 | 3⠀⠀⠀⠀⠀⠀⠀⠀3 | 3

⠀⠀⠀⠀⠀⠀| 1⠀⠀⠀⠀⠀⠀⠀⠀⠀ | 1

By prime factorization we get-

 ☞ \sf { 729 =   \underline{3  \times 3 \times 3} \times  \underline {3 \times 3 \times 3} }

 \sf { = {3}^{3}×{3}^{3}= {(9)}^{3} }

and,

 ☞ \sf { -216 =   \underline - { 2  \times 2 \times 2} \times  \underline {3 \times 3 \times 3} }

 \sf { = -{2}^{3}×{3}^{3}= {(-6)}^{3} }

So we can say that,

 \sf \red { =  \frac{729}{ - 216}  = ( \frac{ 9}{ - 6} ) {}^{3} }

 {\boxed {\red {\bf {  \frac{729}{ - 216}  = ( \frac{ 9}{ - 6} ) {}^{3} }}}}

_______________________

 \huge\rm\red { Question }

  •  \sf\red { 15.625 }

 \huge\rm\green { Solution }

We know,

 \sf { 15.625 =  \frac{15625}{1000} }

So, we'll resolve both denominator and numerator into prime factors.

Resolving 15625 and 1000 into prime factors,

⠀⠀⠀⠀⠀5 | 15625⠀⠀⠀⠀⠀10 | 1000

⠀⠀⠀⠀⠀5 | 3125⠀⠀⠀⠀⠀ 10 | 100

⠀⠀⠀⠀⠀5 | 625⠀⠀⠀⠀⠀⠀10 | 10

⠀⠀⠀⠀⠀5 | 125⠀⠀⠀⠀⠀⠀⠀⠀| 1

⠀⠀⠀⠀⠀5 | 25

⠀⠀⠀⠀⠀5 | 5

⠀⠀⠀⠀⠀ | 1

By prime factorization we get-

 ☞ \sf { 15625=   \underline{5  \times 5 \times 5} \times  \underline {5 \times 5 \times 5} }

 \sf { = {5}^{3}×{5}^{3}= {(25)}^{3} }

and,

 ☞ \sf { 1000=   \underline{10  \times 10 \times 10} = {10}^{3}}

So, we can say that

 \sf { 15.625 = ( \frac{25}{10} ) ^{3}  = ( 2.5) {}^{3} }

 {\boxed {\red {\bf {  15.625 =(2.5) {}^{3}  }}}}

Similar questions