Math, asked by gujjarnitin809, 3 months ago

solve this right please ​

Attachments:

Answers

Answered by Advay71
0

Answer:

(x+1)(x-1)

Step-by-step explanation:

There is an identity--->

(a+b)(a-b) = a^2 - b^2

Using this in our question---->

(x-2)(x+2) + 3

= x^2 - 2^2 +3

= x^2 - 4 + 3

= x^2 - 1

Now, 1 can be written as 1^2 also, so we can again use the same identity

x^2 - 1^2

= (x+1)(x-1)

Hope it helps :)

Please mark as Brainliest !

Answered by EuphoricBunny
24

\bold{\LARGE{\underline{\underline{Answer:–}}}}

(x \: – \:2) \:(x \:+ \:2)\: +\:3\:\:=\:\:x²\: -\:1

_____________________

\bold{\LARGE{\underline{\underline{Explanation:–}}}}

Factories :

(x \: – \:2) \:(x \:+ \:2)\: +\:3

.

Using identity:

a\:+\:b)\:(a\: -\:b)\:=\:a²\: -\:b²

Now,

(x \: – \:2) \:(x \:+ \:2)\: +\:3

\Longrightarrow\:\:(x)²\: -\:(2)²\:+\:3

\Longrightarrow\:\:x²\: -\:4\:+\:3

\Longrightarrow\:\:x²\: -\:1

.

So, (x \: – \:2) \:(x \:+ \:2)\: +\:3\:\:=\:\:x²\: -\:1

Similar questions