Math, asked by bajajpriyanka, 1 month ago

Solve this solve this​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that

  • Coordinates of P be (x, y)

  • Coordinates of A be (6, 1)

  • Coordinates of B be (1, 6)

We know,

Distance Formula :- Distance between two points is calculated by using the formula given below,

Let A(x₁, y₁) and B(x₂, y₂) be two points in the coordinate plane, then distance between A and B is given by

\boxed{ \tt{ \: AB \:  =  \: \sqrt{ {(x_{1} - x_{2}) }^{2} + {(y_{2} - y_{1})}^{2} }}}

Further given that,

P is equidistant from A and B.

\purple{\rm :\longmapsto\:PA=PB}

\purple{\rm :\longmapsto\:PA^{2} =PB ^{2} }

\purple{\rm :\longmapsto\: {(x - 6)}^{2} +  {(y - 1)}^{2} =  {(x - 1)}^{2} +  {(y - 6)}^{2}}

\purple{\rm :\longmapsto\: {x}^{2} + 36  - 12x + {y}^{2} + 1 - 2y = } \\  \\ \purple{ \rm \:  {x}^{2} + 1 - 2x +  {y}^{2}   + 36 - 12y}

\purple{\rm :\longmapsto\:37 - 12x - 2y \:  =  \: 37 - 12y - 2x}

\purple{\rm :\longmapsto\: - 12x - 2y \:  =  \:  - 12y - 2x}

\purple{\rm :\longmapsto\: - 12x + 2x \:  =  \:  - 12y + 2y}

\purple{\rm :\longmapsto\: - 10x \:  =  \:  - 10y}

\purple{\rm :\longmapsto\: x \:  =  \: y}

Hence,

\purple{\rm \implies\:\boxed{ \tt{ \: x \:  -  \: y \:  =  \: 0 \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Explore More :-

1. Section formula

Let A(x₁, y₁) and B(x₂, y₂) be two points in the coordinate plane and C(x, y) be the point which divides AB internally in the ratio m₁ : m₂. Then, the coordinates of C will be

\sf\implies C = \bigg(\dfrac{m_{1}x_{2}+m_{2}x_{1}}{m_{1}+m_{2}}, \dfrac{m_{1}y_{2}+m_{2}y_{1}}{m_{1}+m_{2}}\bigg)

2. Mid-point formula

Let P(x₁, y₁) and Q(x₂, y₂) be two points in the coordinate plane and R(x, y) be the mid-point of PQ. Then, the coordinates of R will be:

\sf\implies R = \bigg(\dfrac{x_{1}+x_{2}}{2}, \dfrac{y_{1}+y_{2}}{2}\bigg)

3. Centroid of a triangle

Centroid of a triangle is the point where the medians of the triangle meet.

Let A(x₁, y₁), B(x₂, y₂) and C(x₃, y₃) be the vertices of a triangle. Let R(x, y) be the centroid of the triangle. Then, the coordinates of R will be:

\sf\implies R = \bigg(\dfrac{x_{1}+x_{2}+x_{3}}{3}, \dfrac{y_{1}+y_{2}+y_{3}}{3}\bigg)

Similar questions