Math, asked by TrustedAnswerer19, 1 month ago

Solve this step by step.

[Don't spamming and relevant answer will require . Otherwise I'll report. ]​​

Attachments:

Answers

Answered by BrainlyWizzard
44

Solution :

 \sf \: Let I =  ∫  \sf\frac{xeˣ}{(x + 1)²} dx

 \sf ɪ = ∫ \sf \frac{eˣ}{(x+1)} dx - ∫ \frac{eˣ}{(x+1) {}^{2} } dx

 \fbox \pink{ \sf \: Applying integration by parts in first integral, we get}

 \sf \: ɪ =  \frac{eˣ}{(x+1)}  + ∫ [ \frac{x}{x + 1²} ] \:  {e}^{ˣ} dx -  ∫  \frac{{e}^{ˣ} }{(x +  {1}^{2} )} dx + c

 \sf \: ɪ =  \frac{eˣ}{(x+1)}  +  ∫ [ \frac{x}{(x+1)²}  ] eˣdx -  ∫ \frac{eˣ}{(x+1)²} dx + c

 \boxed{ \sfɪ = \frac{eˣ}{(x+1)}  +c}

Attachments:
Answered by Salmonpanna2022
7

Step-by-step explanation:

Given that:

 \tt{ \int \frac{x {e}^{x} }{(x + 1 {)}^{2} }dx  }\\  \\

What to do:

To evaluate.

Solution:

 \tt{ \int \frac{x {e}^{x} }{(x + 1 {)}^{2} }dx  }\\  \\

 =  \tt{ \int \frac{(x + 1 - 1) {e}^{x} }{(x + 1 {)}^{2}  } dx} \\  \\

 =   \tt{\int {e}^{x}  \bigg(  \frac{(x - 1)}{x + 1 {)}^{2} }  -  \frac{1}{(x + 1 {)}^{2} }  \bigg)dx} \\  \\

 =   \tt{\int {e}^{x}  \bigg( \frac{1}{(x - 1)}  -  \frac{1}{(x - 1 {)}^{2} }  \bigg)dx} \\  \\

Let \: x + 1 = t⟹dx = dt \\  \\

 =   \tt{\int {e}^{t - 1}  \bigg( \frac{1}{t} -  \frac{1}{ {t}^{2} }   \bigg)dx} \\  \\

 =  \tt{ \frac{1}{e}  \int {e}^{t}  \bigg( \frac{1}{t}  -  \frac{1}{ {t}^{2} }  \bigg)dx} \\  \\

Using

 \int {e}^{x}f[(x) + f'(x)]dx =  {e}^{x}f(x) + c  \\  \\

 =  \tt{ \frac{ {e}^{t} }{e}  \frac{1}{t}  + c} \\  \\

 =   \tt{\frac{ {e}^{t - 1} }{t}  + c} \\  \\

 =   \tt{{e}^{x}  \frac{1}{x  + 1}  + c \:  \:  \red{Ans.} }\\  \\

I hope it's help you...☺

Similar questions