Math, asked by sagnikmondal50, 9 months ago

solve this sum.................​

Attachments:

Answers

Answered by Abhishek474241
4

Correct Question

if Cos \alpha +Cos \beta= \frac{5}{4} and sin \alpha +Sin \beta=\frac{1}{2}

so find  Cos(\alpha-\beta)

Given

sin \alpha +Sin \beta=\frac{1}{2}

Cos \alpha +Cos \beta=\frac{5}{4}

To Find

Cos(\alpha-\beta)

Solution

sin \alpha +Sin \beta=\frac{1}{2}

Both side squaring

=>(sin \alpha +Sin \beta)²=(\frac{1}{2}

 \implies{sin^2 \alpha +Sin^2 \beta++2sin \alpha \times sin\beta}=\frac{1}{4}----(1)

Squaring again to the both side

 Cos \alpha +Cos \beta=\frac{5}{4}

=>( Cos \alpha +Cos \beta)²=(\frac{5}{4}

\implies{Cos^2 \alpha +Cos^2 \beta +2 cos \alpha \times cos\beta}=\frac{25}{16}

Adding equation (1) and (2)

 \implies{sin^2 \alpha +Sin^2 \beta++2sin \alpha \times sin\beta} +{Cos^2 \alpha +Cos^2 \beta +2 cos \alpha \times cos\beta}=\frac{25}{16}+\frac{1}{4}

\implies{1+1+2sin \alpha \times sin\beta+2 cos \alpha \times cos\beta}=\frac{25+4}{16}

\implies 1+1+2sin \alpha \times sin\beta++2 cos \alpha \times cos\beta=\frac{29}{16}

\implies 2sin \alpha \times sin\beta+2 cos \alpha \times cos\beta=\frac{29}{16}-2

\implies{2(sin \alpha \times sin\beta+ cos \alpha \times cos\beta)}=\frac{29-32}{16}

\implies{sin \alpha \times sin\beta+cos \alpha \times cos\beta}=\frac{-3}{32}

we know that

Cos(A-B)=cosA.CosB+SinA.SinB

Therefore

Cos(\alpha-\beta)=\frac{-3}{32}

Answered by Avni2348
2

Answer:

Cos(A-B)=cosA.CosB+SinA.SinB

Therefore

Cos(\alpha-\beta)Cos(α−β) =\frac{-3}{32} 32−3

Similar questions