Math, asked by EliteSoul, 10 months ago

Solve this :-

\displaystyle \dfrac{1 - \sin^2 \dfrac{ \pi}{6} }{1 + \sin^2 \dfrac{\pi}{4} } \times \dfrac{ \cos^2 \dfrac{\pi}{3} + \cos^2 \dfrac{\pi}{6} }{\csc^2 \dfrac{\pi}{2} - \cot^2 \dfrac{\pi}{2} } \: \div  (\sin \dfrac{\pi}{3} \tan \dfrac{\pi}{6} ) + (\sec^2 \dfrac{\pi}{6} - \tan^2 \dfrac{\pi}{6} )


Don't spam! Spam answers will be deleted on the spot! ​

Answers

Answered by Anonymous
130

Answer:

2

Step-by-step explanation:

Given :

\displaystyle \dfrac{1 - \sin^2 \dfrac{ \pi}{6} }{1 + \sin^2 \dfrac{\pi}{4} } \times \dfrac{ \cos^2 \dfrac{\pi}{3} + \cos^2 \dfrac{\pi}{6} }{\csc^2 \dfrac{\pi}{2} - \cot^2 \dfrac{\pi}{2} } \: \div (\sin \dfrac{\pi}{3} \tan \dfrac{\pi}{6} ) + (\sec^2 \dfrac{\pi}{6} - \tan^2 \dfrac{\pi}{6} )

\pi = 180^{\circ}

So we know that pi is 180°,

 \frac{\pi}{6}  = 30^{^{\circ}}

 \frac{\pi}{4}  = 45^{^{\circ}}

 \frac{\pi}{3}  = 60^{^{\circ}}

  \frac{\pi}{2}  = 90^{^{\circ}}

So rewriting the above terms:

\displaystyle \dfrac{1 - \sin^2 30 }{1 + \sin^2 45 } \times \dfrac{ \cos^2 60+ \cos^2 30 }{\csc^2 90 - \cot^2 90} \: \div (\sin 60 \tan 30) + (\sec^2 30 - \tan^2 30)

Now Substituting the values of the trigonometric values would yield us the answer

 \sin(30)  =  \frac{1}{2}

 \sin(45)  =  \frac{1}{ \sqrt{2} }

 \cos(60)  =  \frac{1}{2}

 \cos(30)  =  \frac{ \sqrt{3} }{2}

 \csc(90)  = 1

 \cot(90)  = 0

 \sin(60)  =  \frac{ \sqrt{3} }{2}

 \tan(30)  =  \frac{1}{ \sqrt{3} }

 \sec(30)  =  \frac{2}{ \sqrt{3} }

 \tan(30)  =  \frac{1}{ \sqrt{3} }

Now Substituting the values :

 \displaystyle \dfrac{1 - ( \frac{1}{2}  ) ^{2} }{1 + ( \frac{1}{ \sqrt{2} })^{2}  } \times \dfrac{ \ (\frac{1}{2})^{2}  +  (\frac{ \sqrt{3} }{2})^{2}   }{ {1}^{2}  - \ {0}^{2} } \: \div ( \frac{ \sqrt{3} }{2} \times   \frac{1}{ \sqrt{3} } ) + ( (\frac{2}{ \sqrt{3} }  ^{2} )- ( \frac{1}{ \sqrt{3} } ) ^{2}  )

 \dfrac{1}{2}   \times  1 \:  \div  \dfrac{1}{2}  +  1

 \dfrac{1}{2}   \times  \dfrac{2}{1}  + 1

= 1+1

=2

The value is equal to 2

Attachments:

EliteSoul: Thanks for the answer. :)
Answered by BrainlyElon
34

Answer

\rm \frac{1-sin^2\frac{\pi}{6}}{1+sin^2\frac{\pi}{4}}\times \frac{cos^2\frac{\pi}{3}+cos^2\frac{\pi}{6}}{csc^2\frac{\pi}{2}-cot^2\frac{\pi}{2}} \div \left( sin\frac{\pi}{3}tan\frac{\pi}{6}  \right)+\left( sec^2\frac{\pi}{6}-tan^2\frac{\pi}{6} \right)\\\\:\to \rm \frac{1-sin^2(30)}{1+sin^2(45)}\times \frac{cos^2(60)+cos^2(30)}{csc^2(90)-cot^2(90)}\div (sin(60).tan(30)+(sec^2(30)-tan^2(30))\\\\

:\to \rm \frac{1-\frac{1}{4}}{1+\frac{1}{2}}\times \frac{\frac{1}{4}+\frac{3}{4}}{1-0}\div (\frac{\sqrt{3}}{2}.\frac{1}{\sqrt{3}})+(\frac{4}{3}-\frac{1}{3})\\\\:\to \rm \frac{\frac{3}{4}}{\frac{3}{2}}\times \frac{1}{1}\div (\frac{1}{2})+(1)\\\\:\to \rm \frac{1}{2}\times (2)+1\\\\:\to \rm 1+1\\\\:\to \rm 2

Danger points

→ Be aware of Bodmas rule

where ,

B denotes Brackets

o denotes of

d denotes division

m denotes multiplication

a denotes addition

s denotes subtraction

Similar questions