Math, asked by itzbrainlycommando13, 3 days ago

Solve this :
 \displaystyle \rm \int \sin(3x + 2)dx
No Spamming ​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given integral is

\rm \: \displaystyle \rm \int \sin(3x + 2)dx \\

To evaluate this integral, we use method of Substitution

So, Substitute

\rm \: 3x + 2 = y \\

\rm \: \dfrac{d}{dx}( 3x + 2) =\dfrac{d}{dx} y \\

\rm \: 3dx = dy \\

\rm \: dx \:  =  \: \dfrac{dy}{3}  \\

So, on substituting these values in above integral, we get

\rm \: =  \: \displaystyle \rm \int siny \:  \frac{dy}{3}  \\

\rm \: =  \: \dfrac{1}{3}\displaystyle \rm \int siny \: dy \\

\rm \: =  \: -  \:  \dfrac{1}{3}cosy \:  +  \: c \\

\rm \: =  \: -  \:  \dfrac{1}{3}cos(3x + 2) \:  +  \: c \\

Hence,

\rm\implies\boxed{{\rm \displaystyle \rm \int \sin(3x + 2)dx = - \dfrac{1}{3}cos(3x + 2) + c }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Short Cut Trick :-

\boxed{\sf{  \:\displaystyle \rm \int sin(ax + b)dx \:  =  \:  -  \:  \frac{cos(ax + b)}{a} + c \: }} \\

So, using this trick,

\rm\implies\boxed{{\rm \displaystyle \rm \int \sin(3x + 2)dx = - \dfrac{cos(3x + 2)}{3} + c }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by kvalli8519
8

Answer:

 \rm  -  \frac{1}{3}  \cos(3x + 2) + c

Step-by-step explanation:

To Solve :

 \rm⇢ \: \: \rm \displaystyle \int \sin(3x + 2)dx

 \\

Solution :

Let's substitute t = 3x + 2 ,

⇒ 3dx = dt

then,

\rm⇢ \: \:   \int \sin(t) \frac{dt}{3}

 \rm⇢ \: \:  \frac{1}{3}  \int \sin(t)dt

\rm⇢ \: \:  \frac{1}{3}  [ -  \cos(t)] + c

\bf⇢ \: \:   - \frac{ 1}{3}  \cos(3x + 2) + c

FINAL ANSWER :

 \rm \frac{ 1}{3}  \cos(3x + 2) + c

Similar questions