Math, asked by lovelygirl6822, 4 months ago

Solve this:-
 \frac{11 {}^{z - 2}  - 99 \times 11 {}^{z - 1} }{143 \times 11 {}^{z - 1} +  {11}^{z + 1}  \times 9 }
Do not spam....
Give a proper Explanation...​

Answers

Answered by tennetiraj86
3

Step-by-step explanation:

Given Question:-

Solve [11^(z-1)-99×11^(z-1)]/[143×11^(z-1)+11^(z+1)×9]

Solution:-

See above attachment for understanding

Given that

[11^(z-1)-99×11^(z-1)]/[143×11^(z-1)+11^(z+1)×9]

We know that

a^(m-n)=a^m/a^n

a^(m+n)=a^m×a^n

[(11^z)/(11^2)-99×(11^z)/(11)]/[143×(11^z)/(11)+11^z×11×9]

[(11^z/121)-9×11^z]/[(13×11^z)+(11^z×99)]

11^z[(1/121)-9]/11^z(13+99)

On cancelling 11^z then

(1/121-9)/(112)

[1-(121×9)/121]/112

[(1-1089)/121]/112

(-1088)/(121×112)

(-68)/(121×7)

-68/847

Answer:-

The answer for the given problem is -68/847

Used formulae:-

  • a^(m-n)=a^m/a^n
  • a^(m+n)=a^m×a^n

Attachments:
Answered by mathdude500
2

\large\underline{\bold{Given \:Question - }}

  \tt \: Solve \:  :  \: \dfrac{11 {}^{z - 2} - 99 \times 11 {}^{z - 1} }{143 \times 11 {}^{z - 1} + {11}^{z + 1} \times 9 }

\large\underline{\bold{Solution-}}

Basic Concept Used :-

We have to first reduce the terms to simplest form and then take out common and use the law of exponents to simply this.

Laws of exponents :-

\begin{gathered}(1)\:{\underline{\boxed{\bf{{a^m\times{a^n}\:=\:a^{m\:+\:n}\:}}}}} \\ \end{gathered}

\begin{gathered}(2)\:{\underline{\boxed{\bf{{\dfrac{a^m}{a^n}\:=\:a^{m\:-\:n}\:}}}}} \\ \end{gathered}

\begin{gathered}(3)\:{\underline{\boxed{\bf{{\dfrac{1}{x^n}\:=\:x^{-n}\:}}}}} \\ \end{gathered}

Let's do it now!!

The given statement is

\rm :\longmapsto\: \dfrac{11 {}^{z - 2} - 99 \times 11 {}^{z - 1} }{143 \times 11 {}^{z - 1} + {11}^{z + 1} \times 9 }

\rm :\longmapsto\: \dfrac{11 {}^{z - 2} - 11 \times 9 \times 11 {}^{z - 1} }{ 13 \times 11 \times 11 {}^{z - 1} + {11}^{z + 1} \times  {3}^{2}  }

\rm :\longmapsto\: \dfrac{11 {}^{z - 2} - 9 \times 11 {}^{z - 1 + 1} }{ 13\times 11 {}^{z - 1 + 1} + {11}^{z + 1} \times  {3}^{2}  }

\rm :\longmapsto\: \dfrac{11 {}^{z - 2} - 9 \times 11 {}^{z} }{ 13 \times 11 {}^{z} + {11}^{z + 1} \times  {3}^{2}  }

\rm :\longmapsto\:\dfrac{ {11}^{z} \times  ( { {11}^{ - 2}  - 9)}}{ {11}^{z}  \times ( 13 + 11 \times 9)}

\rm :\longmapsto\:\dfrac{\dfrac{1}{121} - 9 }{ (13 + 99)}

\rm :\longmapsto\:\dfrac{1 - 1089}{121 \times 3 \times (4 + 33)}

\rm :\longmapsto\:\dfrac{ - 1088}{121 \times 112}

\rm :\longmapsto\:\dfrac{ - 1088}{13552}

= -68/847

Similar questions