Solve this:-
Right answer will be marked as brainliest. Donot spam.
Answers
[tex](\frac{r(\pi + r)}{4})^{2} - \frac{\pi {r}^{2} }{2} = 4 \\ \\ \implies \: ( \frac{r\pi + {r}^{2} }{4} )^{2} - \frc{\pi {r}^{2} }{2} = 4 \\ \\ \implies \: \frac{({r\pi + {r}^{2} ) ^{2} }}{ {4}^{2} } - \frac{\p {r}^{2} }{2} = 4 \\ \\ \sf\red {Using \: the \: Algeric \: Identity \: (a + b)² \: = \: a² + b² + 2ab}\\ \\ \implies \: \frac{( {\pi{r})}^{2} \: + \: ( { {r}^{2}) }^{2} \: + (2 \times \pi{r} \: \times {r}^{2}) }{6} - \frac{\pi {r}^{2} }{2} = 4 \\ \\ \implies \: \frac{ {\pi}^{2} {r}^{2} \: \: + \: {r}^{4} \: + \: 2\pi {r}^{3} }{16} \: - \frac{\pi {r}^{2} }{2} = 4 \\ \\ \implies \: \frac{({\pi}^{2} {r}^{2} \: \: + \: {r}^{4} \: + \: 2\pi {r}^{3} )\: - 8\pi {r}^{2} }{16} \: = \: 4 \\ \\ \imlies \: \frac{ {r}^{4} \: +{\pi}^{2} {r}^{2} + 2\pi {r}^{3} \: - 8\p {r}^{2} }{16} \: = \: 4 \\ \\ \implies \: {r}^{4} \: +{\pi}^{2} {r}^{2} + 2\pi {r}^{3} \: - 8\pi {r}^{2} \: = 4 \time 16 \\ \\ \implies \: {r}^{4} \: +{\pi}^{2} {r}^{2} + 2\pi {r}^{3} \: - 8\pi {r}^{2} \: = \: 64 \\ \\ \implies \: {r}^{2} ( {r}^{2} \: + \: {\pi}^{2} \: + 2\pi{r} \: - 8\pi) \: = \: 64 [tex]
♣ Qᴜᴇꜱᴛɪᴏɴ :
★═════════════════★
♣ ᴀɴꜱᴡᴇʀ :
★═════════════════★
♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :