Math, asked by Satyamrajput, 1 year ago

Solve this

Thanks alot♥️♥️

Attachments:

Answers

Answered by kevinujunioroy492d
5
HEY BUDDY

..............................................................................

HERE IS YOUR SOLUTION

______________________________

COMMENT BELOW⬇⬇⬇⬇ FOR DOUBTS

THANKS
Attachments:
Answered by Deepsbhargav
21
» let's..

 = > l = intigrate \frac{x}{ {e}^{ {x}^{2} } } dx
____-________________

● suppose that :-

=> x² = t

» then

 = > 2 {x}^{2 - 1} .dx = dt \\ \\ = > 2 {x}^{} .dx = dt \\ \\ = > x.dx = \frac{dt}{2}

_____________________

» Now..

●PLUG THE VALUE WE GET :-

 = > intigrate \frac{dt}{2 {e}^{t} } \\ \\ = > \frac{1}{2} .intigrate( {e}^{ - t} ).dt \\ \\ = > \frac{1}{2} .( - {e}^{ - t} ) \\ \\ = - \frac{1}{2} . {e}^{ - t}
______________

●AGAIN PUT THE VALUE OF t = x²

 = > - \frac{1}{2} {e}^{ - {x}^{2} } \\ \\ = > - \frac{1}{2. {e}^{ {x}^{2} } }
_______________[ANSWER]

====================================

_-_-_-_✌☆BE \: \: \: \: BRAINLY☆✌_-_-_-_
Similar questions