Math, asked by monjyotiboro, 1 month ago

Solve this ! Topic: limits​

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Given- }}

\rm :\longmapsto\:\displaystyle\lim_{x \to a}  \frac{ {a}^{x}  -  {x}^{a} }{ {x}^{a}  -  {a}^{a} } =  - 1

\large\underline{\sf{To\:Find - }}

The value of a

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:\displaystyle\lim_{x \to a}  \frac{ {a}^{x}  -  {x}^{a} }{ {x}^{a}  -  {a}^{a} } =  - 1

If we put directly x = a, we get indeterminant form.

So, we use here L - Hospital Rule to evaluate this limit.

\rm :\longmapsto\:\displaystyle\lim_{x \to a}  \frac{\dfrac{d}{dx}( {a}^{x}  -  {x}^{a} )}{\dfrac{d}{dx}( {x}^{a}  -  {a}^{a} )} =  - 1

We know,

\boxed{ \rm{ \dfrac{d}{dx}(u + v) = \dfrac{d}{dx}u + \dfrac{d}{dx}v}}

So, using this, we get

\rm :\longmapsto\:\displaystyle\lim_{x \to a}  \frac{\dfrac{d}{dx} {a}^{x}  -  \dfrac{d}{dx}{x}^{a} }{ \dfrac{d}{dx}{x}^{a}  -  \dfrac{d}{dx}{a}^{a} } =  - 1

We know,

\boxed{ \rm{ \dfrac{d}{dx} {a}^{x}  =  {a}^{x}loga}}

\boxed{ \rm{ \dfrac{d}{dx}k = 0}}

\boxed{ \rm{ \dfrac{d}{dx} {x}^{n}  =  {nx}^{n - 1} }}

So, using these results, we get

\red{\rm :\longmapsto\:\displaystyle\lim_{x \to a}  \frac{ {a}^{x} loga -  {ax}^{a - 1} }{ {ax}^{a - 1}  - 0}  =  - 1}

{\rm :\longmapsto\:\displaystyle\lim_{x \to a}  \frac{ {a}^{x} loga -  {ax}^{a - 1} }{ {ax}^{a - 1}}  =  - 1}

{\rm :\longmapsto\:  \dfrac{ {a}^{a} loga -  {a(a)}^{a - 1} }{ {a(a)}^{a - 1}}  =  - 1}

{\rm :\longmapsto\:  \dfrac{ {a}^{a} loga -  {a}^{a } }{ {a}^{a}}  =  - 1}

{\rm :\longmapsto\:  \dfrac{ {a}^{a}( loga - 1) }{ {a}^{a}}  =  - 1}

\rm :\longmapsto\:loga - 1 =  - 1

\rm :\longmapsto\:loga  = 0

\rm :\longmapsto\:loga  = log1

\bf\implies \:a = 1

  • Hence, Option (c) is correct

Additional Information :-

\boxed{ \rm{ \displaystyle\lim_{x \to 0}  \frac{sinx}{x} = 1}}

\boxed{ \rm{ \displaystyle\lim_{x \to 0}  \frac{tanx}{x} = 1}}

\boxed{ \rm{ \displaystyle\lim_{x \to 0}  \frac{log(1 + x)}{x} = 1}}

\boxed{ \rm{ \displaystyle\lim_{x \to 0}  \frac{ {e}^{x}  - 1}{x} = 1}}

\boxed{ \rm{ \displaystyle\lim_{x \to 0}  \frac{ {a}^{x}  - 1}{x} = loga}}

Similar questions