Math, asked by monjyotiboro, 1 month ago

Solve this ! Topic: limits​

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given integral is

\red{\rm :\longmapsto\:\displaystyle\int_0^a\rm  \{f(x) + f( - x) \}dx \:  =  \: \displaystyle\int_{ - a}^a\rm g(x) \: dx}

Let we consider,

\red{\rm :\longmapsto\:\displaystyle\int_0^a\rm  \{f(x) + f( - x) \}dx \: }

can be rewritten as

\rm \:  =  \:  \: \displaystyle\int_0^a\rm f(x) \: dx \:  +  \: \displaystyle\int_0^a\rm f( - x) \: dx

In second integral, we use method of Substitution,

\red{\rm :\longmapsto\:Let \: x =  - y}

\red{\rm :\longmapsto\:dx =  - dy}

In definite integrals, when we substitute, the limits have to be changed accordingly.

So, limits become

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 0 \\ \\ \sf a & \sf  - a \end{array}} \\ \end{gathered}

Now, above integral can be rewritten as

\rm \:  =  \:  \: \displaystyle\int_0^a\rm f(x) \: dx \:   -   \: \displaystyle\int_0^{ - a}\rm f(y) \: dy

We know the Limit interchanging property of integrals,

\boxed{ \rm{ \displaystyle\int_b^a\rm f(x) \: dx \:  =  \: -  \:  \displaystyle\int_a^b\rm f(x) \: dx}}

So, above integral can be rewritten as

\rm \:  =  \:  \: \displaystyle\int_0^a\rm f(x) \: dx \:  +  \: \displaystyle\int_{ - a}^{0}\rm f(y) \: dy

We know the variable changing property of integral,

\boxed{ \rm{ \displaystyle\int_b^a\rm f(x) \: dx \:  =  \: \displaystyle\int_b^a\rm f(y) \: dy \: }}

So, using this, the above integral can be rewritten as

\rm \:  =  \:  \: \displaystyle\int_0^a\rm f(x) \: dx \:  +  \: \displaystyle\int_{ - a}^{0}\rm f(x) \: dx

can be further rewritten as

\rm \:  =  \:  \:  \: \displaystyle\int_{ - a}^{a}\rm f(x) \: dx

Hence, we concluded that

\red{\rm :\longmapsto\:\displaystyle\int_0^a\rm  \{f(x) + f( - x) \}dx \:  =  \: \displaystyle\int_{ - a}^a\rm f(x) \: dx}

But given that,

\red{\rm :\longmapsto\:\displaystyle\int_0^a\rm  \{f(x) + f( - x) \}dx \:  =  \: \displaystyle\int_{ - a}^a\rm g(x) \: dx}

So, from these we concluded that,

\boxed{ \bf \: { f(x) \:  =  \: g(x) \: }}

  • Hence, Option (a) is correct
Similar questions