Math, asked by ritikrish2020, 1 month ago

solve this trigonometric problem If theta=330°, then using the formula tan theta={2tan (theta/(2)}/}1-tan^(2)(theta)/(2)} find the value of {tan(theta)/(2)}.​

Answers

Answered by VishnuPriya2801
64

Answer:-

Given:-

θ = 330°

And,

tan θ = 2 tan (θ/2) / 1 - tan² (θ/2)

Substitute the value of θ here.

⟹ tan 330° = 2 tan (330/2)° / 1 - tan² (330/2)°

330° can be written as (360 - 30)°. so,

⟹ tan (360 - 30)° = 2 tan 165° / 1 - tan² 165°

  • tan (360 - A) = - tan A

⟹ - tan 30° = 2 tan 165° / 1 - tan² 165°

  • tan 30° = 1/3

⟹ ( - 1/√3) (1 - tan² 165°) = 2 tan 165°

⟹ (- 1 + tan² 165°) / √3 = 2 tan 165°

⟹ tan² 165° - 1 = 2√3 tan 165°

⟹ tan² 165° - 2√3 tan 165 - 1 = 0

By splitting the middle term,

⟹ tan² 165° - (√3 + 2) tan 165° - (√3 - 2) tan 165° - 1 = 0

[ (√3 + 2) + (√3 - 2) = 2√3 & (√3 - 2)(√3 +

2) = (√3)² - (2)² = 3 - 4 = - 1 ]

⟹ tan 165° [ tan 165° - (√3 + 2) ] - (√3 - 2) [ tan 165° - (√3 + 2) ] = 0

⟹ [ tan 165° - (√3 + 2) ][ tan 165° - (√3 - √2) ] = 0

tan 165° = ( √3 + 2 , √3 - 2)

tan (θ/2) = (3 + 2 , 3 - 2).

Answered by Itzheartcracer
40

Given :-

θ = 330

To Find :-

find the value of {tan(theta)/(2)}.​

Solution :-

tanθ = 2 tan(θ/2)/1 - tan²(θ/2)

We know that

330 = (360 - 30)

(360 - θ) = -(tanθ)

tan(330) = 2 × (330/2)/1 - tan²(330/2)

→ 2 × tan 165/1 - tan²(165)

→ 2(tan 165)/1 - tan²(165)

As tan 30 = 1/√3

-(tan 30) = (-1/√3)

→ -(tan 30) = 2 tan165/1 - tan²165

→ -(tan 30)(1 - tan² 165) = 2 tan165

→ -(1/√3)(1 - tan²165) = 2 tan165

→ -1(1 - tan²165)/√3 = 2 tan165

→ -1 + tan²165 = √3(2 tan165)

→ -1 + tan²165 = 2√3 × tan165

Transposing all terms to LHS

→ -1 + tan²165 - 2√3 × tan165 = 0

→ tan²165 - 2√3 × tan165 - 1 = 0

On factorising

→ tan²165 - (2 + √3)tan165 - (√3 - 2)tan 165 - 1 = 0

→ tan 165[tan 165 - (2 + √3)] - tan165(√3 + 2) = 0

→ tan 165 = (2 + √3 & √3 - 2)

As

tan 165 = tan (330/2)

Hence

tan(θ/2) = (2 + √3 & √3 - 2)

Know More :-

In a right angled triangle

sin A = Opp/Hyp

cos A = Adj/Hyp

cot A = Adj/Opp

tan A = Opp/Adj

sec A = Hyp/Adj

cosec A = Hyp/Opp

Similar questions