solve this trigonometry please
Attachments:
Answers
Answered by
1
Answer:
Step-by-step explanation:
Given: sin4θa+cos4θb=1a+b
To Prove: sin8θa3+cos8θb3=1(a+b)3
sin4θa+cos4θb=1a+b
b(1−cos2θ)2+acos4θ=aba+b
b−2bcos2θ+(a+b)cos4θ=aba+b
ab+b2−2b(a+b)cos2θ+(a+b)2cos4θ=ab
Let (a+b)cos2θ=x
x2−2bx+b2=0
Or (x−b)2=0
or x=b
or cos2θ=ba+b
Similarly,
sin2θ=aa+b
sin8θa3+cos8θb3
=a(a+b)4+b(a+b)4
=1(a+b)3
subho74:
ok. as you wish.
Similar questions