Math, asked by chaudharymehak2800, 6 hours ago

Solve this trigonometry Question of mathematics​

Attachments:

Answers

Answered by mathdude500
11

Given Question

Evaluate the following

\sf \:(1 +  {tan}^{2}\theta)(1 + sin\theta)(1 - sin\theta)(1 + cos\theta)(1 - cos\theta)(1 +  {cot}^{2}\theta)

 \green{\large\underline{\sf{Solution-}}}

Given Trigonometric function is

\sf \:(1 +  {tan}^{2}\theta)(1 + sin\theta)(1 - sin\theta)(1 + cos\theta)(1 - cos\theta)(1 +  {cot}^{2}\theta)

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{  {sec}^{2}x -  {tan}^{2}x = 1}}}

and

 \purple{\rm :\longmapsto\:\boxed{\tt{  {cosec}^{2}x -  {cot}^{2}x = 1}}}

So, using this identity, we get

\sf  = \:{sec}^{2}\theta[(1 + sin\theta)(1 - sin\theta)][(1 + cos\theta)(1 - cos\theta)]{cosec}^{2}\theta

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ (x + y)(x - y) =  {x}^{2} -  {y}^{2}}}}

So, using this, we get

\sf \:  =  \:  {sec}^{2}\theta (1 -  {sin}^{2}\theta)(1 -  {cos}^{2}\theta) {cosec}^{2}\theta

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{  {sin}^{2}x +  {cos}^{2}x = 1}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{ {cos}^{2}\theta } \times  {cos}^{2}\theta  \times  {sin}^{2}\theta  \times \dfrac{1}{ {sin}^{2} \theta }

\sf\:  =  \: 1 \times 1

\sf\:  =  \: 1

Hence,

\boxed{\tt{ \sf \:(1 +  {tan}^{2}\theta)(1 + sin\theta)(1 - sin\theta)(1 + cos\theta)(1 - cos\theta)(1 +  {cot}^{2}\theta) = 1}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions