Solve this trigonometry question
Prove it -
Cot 4x ( Sin 5x + Sin 3x ) = Cot x ( Sin 5x - Sin3x )
Answers
Answered by
35
_______________________________________________________________
→ To prove :- Cot4x ( Sin 5x + Sin 3x ) = Cot x ( Sin 5x - Sin 3x)
★ Taking L.H.S.
=> Cot4x ( Sin 5x + Sin 3x)
★Taking R.H.S.
→ From Equations ( 1 ) and ( 2 )
1.
2.
3.
______________________________________________________
Answered by
0
Cot4x ( Sin 5x + Sin 3x ) = Cot x ( Sin 5x - Sin 3x)
=Cot4x ( Sin 5x + Sin 3x)
= Cos 4x/Sin4x ( 2 Sin4xCosx)
= 2 × Cos 4x × Cos x
Other side of eq..
Cos x/Sinx ( 2 Cos4x Sinx)
= 2 × Cos 4x × Cos x
Thus both sides are equal so proofed
Similar questions