Math, asked by DrStudy, 1 year ago

Solve this urgently without spamming and the best answer will be marked as the brainliest answer.

Attachments:

Answers

Answered by AbhijithPrakash
24

Answer:

\mathrm{Simplify}\:\left(\left(64\right)^{\dfrac{2}{3}}\times \dfrac{2^{-2}}{7^0}\right)^{-\dfrac{1}{2}}:\quad \dfrac{1}{2}\quad \left(\mathrm{Decimal:\quad }\:0.5\right)

Step-by-step explanation:

\left(\left(64\right)^{\dfrac{2}{3}}\dfrac{2^{-2}}{7^0}\right)^{-\dfrac{1}{2}}

\mathrm{Apply\:exponent\:rule}:\quad \:a^{-b}=\dfrac{1}{a^b}

=\dfrac{1}{\left(64^{\dfrac{2}{3}}\times \dfrac{2^{-2}}{7^0}\right)^{\dfrac{1}{2}}}

\mathrm{Apply\:rule}\:a^0=1,\:a\ne \:0

7^0=1

=\dfrac{1}{\left(64^{\dfrac{2}{3}}\times \dfrac{2^{-2}}{1}\right)^{\dfrac{1}{2}}}

\mathrm{Apply\:rule}\:\dfrac{a}{1}=a

\dfrac{2^{-2}}{1}=2^{-2}

=\dfrac{1}{\left(2^{-2}\times \:64^{\dfrac{2}{3}}\right)^{\dfrac{1}{2}}}

\left(64^{\dfrac{2}{3}}\times \:2^{-2}\right)^{\dfrac{1}{2}}

\mathrm{Simplify}\:64^{\dfrac{2}{3}}\times \:2^{-2}

\mathrm{Factor\:integer\:}64=2^6

=\left(2^6\right)^{\dfrac{2}{3}}\times \:2^{-2}

\mathrm{Apply\:exponent\:rule}:\quad \left(a^b\right)^c=a^{bc}

\left(2^6\right)^{\dfrac{2}{3}}=2^{6\times \dfrac{2}{3}}

=2^{6\times \dfrac{2}{3}}\times \:2^{-2}

\mathrm{Refine}

=2^4\times \:2^{-2}

\mathrm{Apply\:exponent\:rule}:\quad \:a^b\times \:a^c=a^{b+c}

2^4\times \:2^{-2}=\:2^{4-2}

=2^{4-2}

\mathrm{Subtract\:the\:numbers:}\:4-2=2

=2^2

=\left(2^2\right)^{\dfrac{1}{2}}

\mathrm{Apply\:exponent\:rule}:\quad \left(a^b\right)^c=a^{bc}

=2^{2\times \dfrac{1}{2}}

=2

=\dfrac{1}{2}


sipun40: V.good
Answered by Anonymous
19

Answer:-

Refer the attachment

Attachments:

NajeebShamsudeen: ur so good
Anonymous: :)
Similar questions