solve this using quadriatic formula
4x^2-2(a^2+b^2)x+a^2b^2=0.
Answers
Answer:
x= a²/2 or b²/2
Step-by-step explanation:
Given Quadratic equation :
4x² -2(a²+b²)x + a²b² = 0
Comparing it to a general quadratic equation ax²+bx+c=0,
we get a = 4 , b= -2(a²+b²), c= a²b²
By quadratic formula:
x = (-b ± √(b²-4ac))/2a
Putting the corresponding values, we get:
x = (2(a²+b²) ±√(4(a²+b²)²-4(4)(a²b²)))/2(4)
or x = (2a²+2b² ± 2√((a²+b²)²-4a²b²))/8 {Since 4 is common in both factors,
we can take it outside sq.root}
or x = (a²+b² ± √(a²-b²)²)/4 {I hope u know that : (a²+b²)²-4a²b² =(a²-b²)²}
or x = (a² + b² ± (a²-b²))/4
Thus,
x = (a²+b² + a² - b²)/4 or x = (a²+b²-a²+b²)/4
x= 2a²/4 or x = 2b²/4
Thus, x = a²/2 or b²/2
Answer:
a²/2, b²/2
Step-by-step explanation:
Given Equation is 4x² - 2(a² + b²)x + a² b² = 0
Here, a = 4, b = -2(a² + b²), c = a² b²
∴ D = b² - 4ac
⇒ [-2(a² + b²)]² - 4(4)(a²b²)
⇒ 4(a² + b²)² - 16(a²b²)
⇒ 4(a⁴ + b⁴ + 2a²b²) - 16a²b²
⇒ 4a⁴ + 4b⁴ + 8a²b² - 16a²b²
⇒ (2a² - 2b²)²
Now,
⇒ x = (-b ± √D)/2a
= [2(a² + b²) ± √(2a² - 2b²)²]/8
= [2(a² + b²) ± (2a² - 2b²)]/8
(i)
2(a² + b²) + (2a² - 2b²)/8
= 2a² + 2b² + 2a² - 2b²/8
= 4a²/8
= a²/2.
(ii)
2(a² + b²) - (2a² - 2b²)/8
= (2a² + 2b² - 2a² + 2b²)/8
= 4b²/8
= b²/2.
Therefore, the roots are a²/2, b²/2.
Hope it helps!