Math, asked by diya0202, 5 months ago

Solve this with full workout ​

Attachments:

Answers

Answered by Anonymous
3

Solution:-

Given

 \rm \to \: x =  \sqrt{18}

To find the value of

  \to \rm\dfrac{ {x}^{5}  +  {x}^{4} }{ {x}^{3} }

Now Take

\to \rm\dfrac{ {x}^{5}  +  {x}^{4} }{ {x}^{3} }

And simply The given equation

 \rm \to \:  \dfrac{ {x}^{4}(x + 1) }{ {x}^{3} }

\rm \to \:  \dfrac{  x \times {x}^{3}(x + 1) }{ {x}^{3} }

\rm \to \:  \dfrac{  x \times  \cancel{{x}^{3}}(x + 1) }{ \cancel{ {x}^{3} }}

We Get

 \rm \to \: x(x + 1)

 \rm \to \:  {x}^{2}  + x

Now put the value of equation

 \rm \to \:  {x}^{2}  + x

Where x = √18 , We get

 \rm \to \:  {( \sqrt{18} )}^{2}  +  \sqrt{18}

 \rm \to \: 18 +  \sqrt{18}

Answer

\rm \to \: 18 +  \sqrt{18}

Similar questions