solve this with process...
k³ + 6k² + 9k + 4 (factorise it)
Answers
Answered by
9
Let f(k) = k3+ 6k2+ 9k+4
[ find a 'k' that makes the equation = 0 ]
Substitute k = 1,
We get, 1+6+9+4 ≠ 0
Substitute k = -1,
We get -1+6 - 9+4 = 0
[NOTE: Substitute k = 1, -1, 2, -2, etc until we get the above eqn. = 0 .
Here if we take k = -1 we get the above eqn. = 0 . So we take (k+1) ]
k2+5k+4
(k+1) √¯¯k3+ 6k2+ 9k+ 4¯¯¯
- k3 .+ k2_ U+2193.svg U+2193.svg
5k2 + 9k U+2193.svg
- 5k2 + 5 k __
4k + 4
- _ 4k + 4_
0
Now, factorising the quotient : k2+5k+4
k2+5k+4 Sum = 5 , Product = 4 ∴ (4,1)
= k2 +4k + k + 4
= k(k+4) + 1(k+4)
= (k+1)(k+4)
U+2196.svg(from)
∴ the factors are : (k+1) (k+1)(k+4)
(from)U+2193.svg k2+5k+4
(k+1) √¯¯k3+ 6k2+ 9k+ 4¯¯¯
∴ Ans : (k+1)(k+1)(k+4)
Answered by
18
Now, k³ + 6k² + 9k + 4
= k³ + k² + 5k² + 5k + 4k + 4
= k² (k + 1) + 5k (k + 1) + 4 (k + 1)
= (k + 1) (k² + 5k + 4)
= (k + 1) {k² + (1 + 4) k + 4}
= (k + 1) {k² + k + 4k + 4}
= (k + 1) {k (k + 1) + 4 (k + 1)}
= (k + 1) (k + 1) (k + 4) ,
which is the required factorization.
= k³ + k² + 5k² + 5k + 4k + 4
= k² (k + 1) + 5k (k + 1) + 4 (k + 1)
= (k + 1) (k² + 5k + 4)
= (k + 1) {k² + (1 + 4) k + 4}
= (k + 1) {k² + k + 4k + 4}
= (k + 1) {k (k + 1) + 4 (k + 1)}
= (k + 1) (k + 1) (k + 4) ,
which is the required factorization.
Similar questions