Solve this with proper explanation.
Answers
_______________________________
According to question:-
horizontal range=3×maximum height
___________________________
second method
Let the angle of projection be @
Let maximum range be R and maximum height be H
According to given condition -> R=3H
Since formula for R is R = u2Sin2@/g and formula for H is H = u2Sin2@/2g
Therefore according to condition ----> u2Sin2@/g = 3 x u2Sin2@/2g
u2 , g will be cancelled
Since Sin2@ = 2Sin@Cos@
2Sin@Cos@ = 3 x Sin2@/2
2Cos@ = 3 x Sin@/2 (Sin@ and Sin2@ are cancelled)
4Cos@ = 3Sin@
tan@ = 4/3 ----> @ = tan-1(4/3)
Angle of projection is @ = tan-1(4/3)
________________________
hops this may help you
Answer:
According to question:-
horizontal range=3×maximum height
\begin{lgathered}\frac{ {u}^{2} {sin}^{2} \theta }{g} = \frac{3 \times {u}^{2} { {sin}^{2} } \theta }{2g} \\ \\ \boxed{ \fbox{ {sin}^{2} \theta = 2sin.cos}} \ \\ \ \\ 2sin \theta.cos = \frac{3}{2} {sin}^{2} \theta \\ \\ tan \theta = \frac{4}{3} \\ \theta = {tan}^{ - 1} ( \frac{4}{3} )\end{lgathered}
g
u
2
sin
2
θ
=
2g
3×u
2
sin
2
θ
sin
2
θ=2sin.cos
2sinθ.cos=
2
3
sin
2
θ
tanθ=
3
4
θ=tan
−1
(
3
4
)
_______________________
Hope it helps uhh