Math, asked by Cobycat, 1 month ago

solve this with proper steps ​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \tt \:  \frac{ tan(A) }{1 -  cot(A) }  + \frac{ cot(A) }{1 -  tan(A) }   \\

 \tt  = \:  \frac{ tan(A) }{1 -  cot(A) }  + \frac{ cot(A) }{1 -  \dfrac{1}{ cot(A)} }   \\

 \tt  = \:  \frac{ tan(A) }{1 -  cot(A) }  + \frac{ cot(A) }{ \dfrac{ cot(A) -  1}{ cot(A)} }   \\

 \tt  = \:  \frac{ tan(A) }{1 -  cot(A) }   - \frac{ cot^{2} (A) }{1 - cot(A)  }   \\

 \tt  =  \frac{ tan(A)  - cot^{2} (A) }{1 - cot(A)  }   \\

 \tt  =  \frac{  \dfrac{1}{cot(A)}  - cot^{2} (A) }{1 - cot(A)  }   \\

 \tt  =  \frac{  1  - cot^{3} (A) }{ cot(A) (1 - cot(A))  }   \\

 \tt  =  \frac{   \{1  - cot (A) \} \{ 1 +cot(A) +cot ^{2} (A)\} }{ cot(A) (1 - cot(A))  }   \\

 \tt  =  \frac{   1 +cot(A) +cot ^{2} (A)}{ cot(A)   }   \\

 \tt  =   tan(A) + 1 +cot(A) \\

 \red{ \tt  =  1 +  tan(A)  +cot(A)} \\

Now,

 \tt  =  1 +   \frac{sin(A)}{ cos(A) }  + \frac{cos(A)}{ sin(A) } \\

 \tt  =  \frac{ sin(A) cos(A) +cos^{2} (A) +sin^{2} (A)}{ sin(A) cos(A) } \\

 \red{ \tt  =  1 +  cosec(A) sec(A)} \\

Similar questions