Math, asked by THELEGENDARYKING, 1 year ago

SOLVE THIS WITH STEPS
5 + 2 \sqrt{3}  \div 7 + 4 \sqrt{3}  = a + b \sqrt{3}

Attachments:

Answers

Answered by rishu6845
2

Answer:

plzzz give me brainliest ans and plzzzz follow me please give me thanks

Attachments:
Answered by Anonymous
4

 \tt given :   -  \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  = a + b \sqrt{3}  \\  \\ \tt LHS  :  -  \\  \\  \tt =  \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  \\  \\  \sf rationalizing \\  \\  \tt =  \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  \times  \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }   \\  \\  \tt =  \frac{(5 + 2 \sqrt{3} )(7 - 4 \sqrt{3}) }{(7 + 4 \sqrt{3})(7 - 4 \sqrt{3})  }  \\  \\  \tt =  \frac{5(7 - 4 \sqrt{3}) + 2 \sqrt{3} (7 - 4 \sqrt{3}  )}{( {7})^{2}  - ( {4 \sqrt{3} })^{2} }  \\  \\  \tt =  \frac{35 - 20 \sqrt{3} + 14 \sqrt{3}   - 24}{49 - 48}  \\  \\  \tt =  \boxed{11 + 34 \sqrt{3} }

RHS :-

a + b√3

comparing LHS with RHS

➡ 11 + 34√3 = a + b√3

therefore a = 11 and b = 34

identity used while rationalizing :- (a + b) (a - b) = a² - b²

Similar questions