Math, asked by ammulya3637, 1 year ago

solve this without spamming :)​

Attachments:

Answers

Answered by Anonymous
0

Answer:

\bold\red{(D)\frac{4( \sqrt{3} + 2) }{3} }

Step-by-step explanation:

Given,

y -  \sqrt{3} x + 3 = 0

We can also write it as,

 \frac{y - 0}{ \frac{ \sqrt{3} }{2} }  =  \frac{x -  \sqrt{3} }{ \frac{1}{2} }  = r \:  \:  \:  \:  \:  \: ...........(i)

Substituting,

x =  \sqrt{3}  +  \frac{r}{2}

and,

y =  \frac{ \sqrt{3} }{2} r

in the parabola,

 {y}^{2}  = x + 2

we get,

 =  >  \frac{3 {r}^{2} }{4}  =  \frac{r}{2}  +  \sqrt{3}  + 2 \\  \\  =  > 3 {r}^{2}  - 2r - (4 \sqrt{3}  + 8) = 0 \\  \\

Therefore,

we get,

  =  &gt; PA .PB =  |r1.r2|  =  \frac{4 \sqrt{3} + 8 }{3}   \\  \\  =  &gt;  PA.PB</p><p>  = \frac{4( \sqrt{3} + 2) }{3} </p><p>

Hence,

Correct Option is (D)

Similar questions