Solve this without spamming plz.
Answers
If [(9^n x 3^2 x 3^n - ( 27 )^n )]/ [(3^(3m) x 2^3 ] = 3^( - 3 )
Then prove that ( m - n) = 1
[(9^n x 3^2 x 3^n - ( 27 )^n )]/ [(3^(3m) x 2^3 ] = 3^( - 3 )
⟹ [ ( 9^n x 3^2 x 3^n - ( 27 )^n) ]
= ( 3^( - 3)x [ ( 3^( 3m) x 2^3 ) ]
⟹ [ 27^n x 9 - (27 )^n ]
= [ ( 3^(3m) x 8 ) / ( 3^(3) )]
⟹ [ ( 27^n ( 9 - 1 ) ]
= [ (( 27 )^(m) x 8 ) / 27 )]
⟹ 27^n x 8 = ((27^(m) x 8 )/ 27
⟹ 27^n = 27^m / 27
⟹ 27 = 27^m / 27^n
⟹ 27 = 27 ^m x 27^(- n)
⟹ 27^(1 ) = 27 ^( m - n)
Therefor, the bases of both sides are equal
( m - n) = 1
hence proved
__________________________________
▶for such a types of problems ,we need to use certain identities given below.
◾( m / n) ^2 =( m )^2 / (n) ^2
◾ √( m / n) = √m / √n
◾( a ^(m )^(n)) = ( a^ ( m ✖ n))
◾( a ^( - m)) = 1 /( a ^(m) )
◾( a ^m ✖ a^n ) = ( a ^( m + n))
◾( 1 ) ^(z) = (1)
◾(a^(m)) /(a^(n)) = a^(m - n)
__________________________________