Math, asked by 4YU5HR455411, 1 year ago

solve to be an brainlist

Attachments:

Answers

Answered by amanya012
4
here is your answer....

hope it will help you..

plz mark it as brainliest ❤️❤️❤️
Attachments:

amanya012: plz mark it as brainliest
Answered by Anonymous
2
Hey there !!


Question 6 :- Verify that :-)

 \bf {[ {(729)}^{ \frac{ - 5}{3} } ]} ^{ \frac{ - 1}{2} }  =  {(729)}^{  \frac{ - 5}{3}  \times  \frac{( - 1)}{2} } . \\  \\  =  {(729)}^{  \frac{ - 5}{3}  \times  \frac{( - 1)}{2} } =  {(729)}^{  \frac{ - 5}{3}  \times  \frac{( - 1)}{2} }. \\  \\  =  {(729)}^{ \frac{5}{6} }  =  {(729)}^{ \frac{5}{6} } . \\  \\  \huge verified \checkmark \checkmark

▶ Question 7:- Solve the given exponential equations :-)


(i) {( \sqrt{6} )}^{x - 2}   = 1. \\  \\  = >   ({  \cancel{\sqrt{6}} )}^{x - 2}  =   ({  \cancel{\sqrt{6} })}^{0} . \\  \\  =  > x - 2 = 0. \\  \\  =  > x = 2. \: ans \checkmark


[Law used :- If a is a non zero integer then  {a}^{0} = 1 . ]


(ii) {3}^{4x}  =  \frac{1}{81} . \\  \\  =  >  {3}^{4x}  =  \frac{1}{ {3}^{4} } . \\  \\  =  >  { \cancel3}^{4x}  =  { \cancel3}^{ - 4} . \\  \\  =  > 4x =  - 4. \\  \\  =  > x =  \frac{ - 4}{4} . \\  \\  =  > x =  - 1. \: ans \checkmark



(iii) {( \sqrt{2} )}^{x}  =  {2}^{8} . \\  \\  =  >  {( \sqrt{2} )}^{x}  =  {( \sqrt{2}  \times  \sqrt{2}) }^{8} . \\  \\  =  >  {( \sqrt{2} )}^{x}  = ({ {( \sqrt{2} )}^{2} )}^{8} . \\  \\  =  >  {(  \cancel{\sqrt{2}}) }^{x}  =  {(  \cancel{\sqrt{2}}) }^{16} . \\  \\  =  > x = 16. \: ans \checkmark



(iv) {2}^{2x + 1}  =  {4}^{2x - 1} . \\  \\  =  > {2}^{2x + 1} =  {(2 \times 2)}^{2x - 1} . \\  \\  =  > {2}^{2x + 1} =  { ({2}^{2} )}^{2x - 1} . \\  \\  =  > { \cancel2}^{2x + 1} =  { \cancel2}^{4x - 2} . \\  \\  =  > 2x + 1 = 4x - 2. \\  \\  =  > 4x - 2x = 1 + 2. \\  \\  =  > 2x = 3. \\  \\  =  > x =  \frac{3}{2} .ans \checkmark


✔✔ Hence, it is solved ✅✅.

____________________________________


THANKS


#BeBrainly.
Similar questions