Math, asked by sagars25081999, 9 months ago

-) Solve: un+2 - 3un+1 +2un = 2^n , given u0 = 0, u1 = 1 by using Z-transforms.​

Answers

Answered by mk104080867062
4

Step-by-step explanation:

djdjdb jfjbd fifue djhre to hear about

Answered by ssanskriti1107
1

Answer:

u_{n} =2^{n}n

Step-by-step explanation:

Step 1:

Given, u_{n+2} -3u_{n+1}+2u_{n} = 2^{n}

This can be written as u(n+2)-3u(n+1)+2u(n)=2^{n}

Taking the Z-transform of both sides, we get

Z{\{u(n+2)\}} -3Z{\{u(n+1)\}} + 2Z{\{u(n)\}} = Z \{{2^{n}}\}

Step 2:

[z^{2} F(z)-z^{2}u(0)-zu(1)]-3[zF(z)-zu(0)]+2F(z)=\frac{z}{z-2}

Putting values u_{0}=0,u_{1}=1 in the above equation,

\implies[z^{2} F(z)-0-z]-3[zF(z)-0]+2F(z)=\frac{z}{z-2}

\impliesF(z)(z^{2} +3z+2)=\frac{z}{z-2}+z

Step 3:

Factorizing z^{2} -3z+2 = (z-1)(z-2),

\implies   F(z)(z-1)(z-2)=\frac{z}{z-2}+z

\implies F(z)(z-1)(z-2)=\frac{z+z^{2}-2z }{z-2}

\implies F(z)(z-1)(z-2)=\frac{z^{2}-z }{z-2}

\implies F(z)(z-1)(z-2)=\frac{z(z-1)}{z-2}

\implies \frac{ F(z)}{z} =\frac{(z-1)}{(z-2)(z-1)(z-2)}  

 \implies \frac{ F(z)}{z} =\frac{1}{(z-2)(z-2)}  

Step 4:

Solving the RHS by partial fraction method,

\frac{F(z)}{z} =\frac{1}{(z-2)(z-2)} = \frac{A}{z-2} +\frac{B }{(z-2)^{2}}           ...(i)

\implies 1=A(z-2)+B\\\implies 1=Az-2A+B\\\\\therefore Az = 0and        -2A+B=1

\implies A=0                                      B=1

Substituting values of A and B in eq (i),

\frac{F(z)}{z} =\frac{1 }{(z-2)^{2}}

\implies F(z) =\frac{z }{(z-2)^{2}}

Taking inverse Z transformation,

u_{n} =2^{n}n

Hence, u_{n} =2^{n}n

#SPJ3

Similar questions