Math, asked by rajputanthal1981, 2 months ago

solve urgently . relevant answers only ​

Attachments:

Answers

Answered by shrirampawar249
1

Answer:

 \frac{ {9}^{n} \times  {3}^{2}  \times  { {3}^{ \frac{ - n}{2} } }^{ - 2} -  {27}^{n}   }{ {3}^{3m}  \times  {2}^{3} }  =  \frac{1}{729}  \\   \frac{ {3}^{2n } \times  {3}^{2} \times  {3}^{n}   -  {3}^{3n}  }{{3}^{3m}  \times  {2}^{3} }  =  \frac{1}{ {9}^{3} }  \\  \frac{ {3}^{2n + 2 + n}  -  {3}^{3n} }{ {3}^{3m}  \times  {2}^{3} }  =  \frac{1}{ {( {3}^{2}) }^{3} }  \\  \frac{ {3}^{3n + 2} -  {3}^{3n}  }{ {3}^{3m}  \times  {2}^{3} }  =  \frac{1}{ {3}^{6} }  \\  \frac{ {3}^{3n} ( {3}^{2} - 1) }{ {3}^{3m}  \times 8}  =  \frac{1}{ {3}^{6} }  \\  =   \frac{{3}^{3n}  \times 8}{ {3}^{3m}  \times 8}  =  {3}^{ - 6}  \\  {3}^{3n - 3m}  =  {3}^{ - 6}  \\ 3n - 3m =  - 6 \\ n - m =  - 2 \\ m - n = 2

Similar questions