Solve using appropriate Identity
1. (a2-b)2
2. (y3-2) (y3-6)
3. 502× 502
Answers
1. = We need to find (a2 + b2)
We know by identity that (a2 + b2)= [(a + b)2 + (a – b)2]/2
Let us consider the equation
(a + b)2 = a2 + b2 + 2ab……………………….(1)
Thus,
a2 + b2 = (a + b)2 – 2ab………………………..(2)
Also consider hi
(a – b)2 = a2 + b2 – 2ab………………………..(3)
Thus,
a2 + b2 = (a – b)2 + 2ab……………………….(4)
Addition of equation (1) and (2) we get
(a + b)2 + (a – b)2 = [a2 + b2 + 2ab] + [a2 + b2 – 2ab]…………….(5)
(a + b)2 + (a – b)2 = 2a2 + 2b2
(a + b)2 + (a – b)2 = 2(a2 + b2)
∴ (a2 + b2) = [(a + b)2 + (a – b)2]/2…………………..(6)
Let us prove the above equation.
Consider a = 2 and b= 3, substitute in the equation (6) we get
(22 + 32) = [(2 + 3)2 +(2 – 3)2]/2
Consider LHS,
LHS = (22 + 32)
LHS = (4 + 9)
LHS = 13
Consider RHS
RHS = [(2 + 3)2 +(2 – 3)2]/2
RHS = [(52) + (-1)2]/2
RHS = [25 + 1]/2
RHS = 13
2.= l will send a photo this answer
3.= 502 × 502 = 252004