Math, asked by mmm9582, 3 months ago

solve using ASSUME MEAN METHOD​

Attachments:

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c|c|c|c}\sf Class\: interval&\sf Frequency\: (f_i)&\sf \: midvalue \: (x_i)&\sf \: u_i&\sf \: f_iu_i\\\frac{\qquad  \qquad}{}&\frac{\qquad  \qquad}{}\\\sf 11 - 13&\sf 3&\sf12&\sf - 3&\sf - 9\\\\\sf 13 - 15 &\sf 6&\sf14&\sf - 2&\sf - 12\\\\\sf 15-17 &\sf 9 &\sf16&\sf - 1&\sf - 9\\\\\sf 17 - 19&\sf 13&\sf18 - A&\sf0&\sf0\\\\\sf 19-21&\sf f&\sf20&\sf1&\sf \: f\\\\\sf 21-23&\sf 5&\sf22&\sf2&\sf 10\\\\\sf 23-25&\sf 4&\sf24&\sf3&\sf12\\\frac{\qquad}{}&\frac{\qquad}{}\\\sf & \sf \end{array}}\end{gathered}\end{gathered}\end{gathered}

Now,

↝ We have,

 \:  \:  \:  \:  \:  \:  \:  \:  \bull \sf \: A \:  =  \: 18

 \:  \:  \:  \:  \:  \:  \:  \:  \bull \sf \: h \:  =  \: 2

 \:  \:  \:  \:  \:  \:  \:  \:  \bull \sf \:  \sum \: f_i \:  =  \: 40 + f

 \:  \:  \:  \:  \:  \:  \:  \:  \bull \sf \:  \sum \: f_i \: u_i \:  =  \: f \:  -  \: 8

 \:  \:  \:  \:  \:  \:  \:  \:  \bull \sf \:  \overline{x} \:  =  \: 18

Now,

↝ Mean using Step Deviation Method is given by

\dashrightarrow\sf \: \overline{x} \: = \:  A \:  +  \: \dfrac{ \sum f_i u_i}{ \sum f_i} \:  \times  \: h

On substituting all the above values, we get

\rm :\longmapsto\:\cancel{18} = \cancel{18} + \dfrac{(f - 8)}{(40 + f)}  \times 2

\rm :\longmapsto\:\dfrac{f - 8}{f + 40}  \times 2 = 0

\rm :\longmapsto\:f - 8 = 0

\bf\implies \:f \:  =  \: 8

\overbrace{ \underline { \boxed { \bf \therefore \: The \: value \: of \:f \:  =  \: 8}}}

Additional Information :-

Mean using Direct Method :-

\dashrightarrow\sf Mean = \dfrac{ \sum f_i x_i}{ \sum f_i}

Mean using Short Cut Method :-

\dashrightarrow\sf Mean  \: = \: A \:  +  \:  \dfrac{ \sum f_i d_i}{ \sum f_i}

Similar questions